Preface

Thanks for choosing our products.
KOC560 series variable-frequency drive (VFD) is newly-designed vector-type VFD by our company for controlling asynchronous AC inductance motors. Through adopting the most advanced speed sensor-less vector control technology and DSP control system, as well as enhancing the reliability and adaptability to the environment, our product is armed with optimized functions, flexible applications and stable performances.

The vector control performance of KOC560 series VFD is as outstanding as that of the leading sophisticated VFD in worldwide market. Its integrated speed and torque control can satisfy various application demands, in the meantime, its excellent anti-trip performance and strong adaptability to worse grid, temperature, humidity and dust guarantees its outstanding reliability and stability.

KOC560 series VFD adopts modular to fulfill various customized needs. The powerful speed control, torque control, simple PLC, flexible input/output terminals, pulse frequency reference and traverse control can satisfy various requirements from complicated drives to reduce system cost and improve system reliability.

KOC560 series VFD adopts electromagnetic compatibility design to ensure strong antielectromagnetic interference capacity while realizing low noise and weakening electromagnetic interference in the application sites.

This manual presents installation and configuration, parameters setup, fault diagnoses and daily maintenance and relative precautions to customers. Please read this manual carefully before installation to ensure KOC560 series VFD is installed and operated properly to give full play to its excellent performance.

If the end user is a military unit or the product is used for weapon manufacturing, please comply with the relevant export control regulations of the Foreign Trade Law of the People's Republic of China and complete the necessary formalities.

Our company reserves the right to update the information of our products without prior notice.

Contents

Preface
Contents ii
1 Safety precautions1
1.1 What this chapter contains 1
1.2 Safety definition 1
1.3 Warning symbols 1
1.4 Safety guidelines 2
2 Quick start 5
2.1 What this chapter contains 5
2.2 Unpacking inspection 5
2.3 Application confirmation 5
2.4 Installation environment 5
2.5 Installation confirmation 6
2.6 Basic commissioning 6
3 Product overview 7
3.1 What this chapter contains 7
3.2 Basic principles 7
3.3 Product specifications 8
3.4 Nameplate 10
3.5 Type designation key 10
3.6 Rated specifications 10
3.7 Structure diagram 12
4 Installation guidelines 13
4.1 What this chapter contains 13
4.2 Mechanical installation 13
4.3 Standard wiring 17
4.4 Layout protection 27
5 Keypad operation procedure 29
5.1 What this chapter contains 29
5.2 Keypad 29
5.3 Keypad displaying 31
5.4 Keypad operation 32
6 Function parameters 34
6.1 What this chapter contains 34
6.2 KOC560 general series function parameters 34
KOC560 series VFD Contents
7 Basic operation instruction 107
7.1 What this chapter contains 107
7.2 First powering on 107
7.3 Vector control 109
7.4 Torque control 106
7.5 Parameters of the motor 107
7.6 Start and stop control 108
7.7 Frequency setting 109
7.8 Simple PLC 111
7.9 Multi-step speed running 111
7.10 PID control 112
7.11 Pulse counter 115
8 Fault tracking 116
8.1 What this chapter contains 116
8.2 Alarm and fault indications 116
8.3 How to reset 116
8.4 Fault history 116
8.5 Fault instruction and solution 116
8.6 Common fault analysis 121
8.7 VFD system interference troubleshooting 126
8.8 Maintenance and hardware diagnostics 127
8.8.4 Power cable 128
9 Quality Commitment 116
9.1 Warranty 116
9.2 KOC560 after sales instructions 116
9.3 Service 116
9.4 Responsibility 116
10 Communication protocol 132
10.1 What this chapter contains 132
10.2 Brief instruction to MODBUS protocol 132
10.3 Application of the VFD 133
10.4 RTU command code and communication data illustration 136
10.5 The definition of data address 143
10.6 Example of writing and reading 150
10.7 Common Communacation Faults 151
Appendix A Technical data 155
A. 1 What this chapter contains 155
A. 2 Ratings 155
A. 3 Electric power network specification 156
A. 4 Motor connection data 156
A. 5 Applicable standards 157
A. 6 EMC regulations 157
Appendix B Dimension drawings 159
B. 1 What this chapter contains 159
B. 2 Keypad structure 159
B. 3 VFD chart 160
Appendix C Peripheral options and parts 166
C. 1 What this chapter contains 166
C. 2 Peripheral wiring 166
C. 3 Power supply 167
C. 4 Cables 167
C. 5 Breaker, electromagnetic contactor and leakage protection switch 171
C. 6 Reactors 173
C. 7 Filters 174
C. 8 Braking system 176
C. 9 Other optional parts 179
Appendix D Further Information 180

1 Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the variable-frequency drive (VFD). If ignored, physical injury or death may occur, or damage may occur to the devices.

If any physical injury or death or damage to the devices occurs for ignoring to the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

1.2 Safety definition

Danger: Serious physical injury or even death may occur if not follow relevant requirements

Warning: Physical injury or damage to the devices may occur if not follow relevant requirements

Note: \quad Physical hurt may occur if not follow relevant requirements
Qualified People working on the device should take part in professional electrical electricians: and safety training, receive the certification and be familiar with all steps and requirements of installing, commissioning, operating and maintaining the device to avoid any emergency.

1.3 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual:

Symbols	Name	Instruction	Abbreviation
Danger	Electrical Danger	Serious physical injury or even death may occur if not follow the relative requirements	General danger
Norsical injury or damage to the devices			
may occur if not follow the relative			
requirements			

1.4 Safety guidelines

4	- Only qualified electricians are allowed to operate on the VFD. - Do not carry out any wiring and inspection or changing components when the power supply is applied. Ensure all input power supply is disconnected before wiring and checking and always wait for at least the time designated on the VFD or until the DC bus voltage is less than 36 V . Below is the table of the waiting time:
	VFD model \quad Minimum waiting time
	380V 7.5KW-110KW 5 minutes
	380 V 350 KW and higher 25 minutes
$1!$	- Do not refit the VFD unauthorized; otherwise fire, electric shock or other injury may occur.
SII	- The base of the heat sink may become hot during running. Do not touch to avoid hurt.
θ	- The electrical parts and components inside the VFD are electrostatic. Take measurements to avoid electrostatic discharge during relevant operation.

1.4.1 Delivery and installation

| -Please install the VFD on fire-retardant material and keep the VFD away from
 combustible materials.
 -
 Connect the braking optional parts (braking resistors, braking units or feedback
 units) according to the wiring diagram.
 Do not operate on the VFD if there is any damage or components loss to the
 VFD.
 Do not touch the VFD with wet items or body, otherwise electric shock may
 occur. |
| :--- | :--- |

Note:

- Select appropriate moving and installing tools to ensure a safe and normal running of the VFD and avoid physical injury or death. For physical safety, the erector should take some mechanical protective measures, such as wearing exposure shoes and working uniforms.
- Ensure to avoid physical shock or vibration during delivery and installation.
- Do not carry the VFD by its cover. The cover may fall off.
- Install away from children and other public places.
- If the installation site is higher than 2000 meters above sea level, the inverter will not meet the requirements of IEC61800-5-1 low voltage protect.
- Please use in the appropriate environment (see "Installation Environment" section)
- Don't allow screws, cables and other conductive items to fall inside the VFD.
- The leakage current of the VFD may be above 3.5 mA during operation. Ground with proper techniques and ensure the grounding resistor is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor (with the same cross sectional area). For the 030G/037P and higher models, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- $\quad \mathrm{R}, \mathrm{S}$ and T are the input terminals of the power supply, while U, V and W are the motor terminals. Please connect the input power cables and motor cables with proper techniques; otherwise the damage to the VFD may occur.

1.4.2 Commission and running

| -Disconnect all power supplies applied to the VFD before the terminal wiring
 and wait for at least the designated time after disconnecting the power supply.
 -
 High voltage is present inside the VFD during running. Do not carry out any
 operation except for the keypad setting. |
| :---: | :--- | :--- |
| - The VFD may start up by itself when F01.21=1. Do not get close to the VFD |
| and motor. |\quad| The VFD cannot be used as "Emergency-stop device". |
| :--- |
| - The VFD cannot be used to break the motor suddenly. A mechanical braking |
| device should be provided. |

Note:

- Do not switch on or off the input power supply of the VFD frequently.
- For the VFD that has been stored for a long time, check and fix the capacitance and try to run it again before utilization (see Maintenance and hardware diagnostics).
- Cover the front board before running, otherwise electric shock may occur.

1.4.3 Maintenance and replacement of components

4	- Only qualified electricians are allowed to perform the maintenance, inspection, and components replacement of the VFD. - Disconnect all power supplies to the VFD before the terminal wiring. Wait for at least the time designated on the VFD after disconnection. - Take measures to avoid screws, cables and other conductive materials to fall into the VFD during maintenance and component replacement.

Note:

- Please select proper torque to tighten screws.
- Keep the VFD, parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out any insulation voltage-endurance test on the VFD and do not measure the control circuit of the VFD by megameter.
- Carry out a sound anti-electrostatic protection to the VFD and its internal components during maintenance and component replacement.

1.4.4 Scrap treatment

! - There are heavy metals in the VFD. Deal with it as industrial waste.

2 Quick start

2.1 What this chapter contains

This chapter mainly describes the basic guidelines during the installation and commission procedures on the VFD, which you may follow to install and commission the VFD quickly.

2.2 Unpacking inspection

Check as followings after receiving products:

1. Check whether the packing box is damaged or dampened. If yes, contact local dealers or offices.
2. Check the model identifier on the exterior surface of the packing box is consistent with the purchased model. If no, contact local dealers or offices.
3. Check whether the interior surface of packing box is abnormal, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked. If yes, contact local dealers or offices.
4. Check whether the name plate of the VFD is consistent with the model identifier on the exterior surface of the packing box. If not, contact local dealers or offices.
5. Check whether the accessories (including user's manual and control keypad) inside the packing box are complete. If not, contact local dealers or offices.

2.3 Application confirmation

Check the machine before beginning to use the VFD:

1. Check the load type to verify that there is no overload of the VFD during work and check whether the VFD needs to modify the power degree.
2. Check that the actual current of the motor is less than the rated current of the VFD.
3. Check that the control accuracy of the load is the same of the VFD.
4. Check that the incoming supply voltage is correspondent to the rated voltage of the VFD.

2.4 Installation environment

Check as followings before the actual installation and usage:

1. Check that the ambient temperature of the VFD is below $40^{\circ} \mathrm{C}$. If exceeds, derate 1% for every additional $1^{\circ} \mathrm{C}$. Additionally, the VFD cannot be used if the ambient temperature is above $50^{\circ} \mathrm{C}$.
Note: for the cabinet VFD, the ambient temperature means the air temperature inside the cabinet.
2. Check that the ambient temperature of the VFD in actual usage is above $-10^{\circ} \mathrm{C}$. If not, add heating facilities.
Note: For the cabinet VFD, the ambient temperature means the air temperature inside the cabinet.

> 3. Check whether the VFD installation site altitude is less than 1000 meters. If yes, derate 1% for every increase of 100 m
4. Check that the humidity of the actual usage site is below 90% and condensation is not allowed. If not, add additional protection to the VFD.
5. Check that the actual usage site is away from direct sunlight and foreign objects cannot enter the VFD. If not, add additional protective measures.
6. Check that there is no conductive dust or flammable gas in the actual usage site. If not, add additional protection to VFD.

2.5 Installation confirmation

Check as followings after the installation:

1. Check that the input and output cables meet the need of actual load.
2. Check that the accessories of the VFD are correctly and properly installed. The installation cables should meet the needs of every component (including input reactors, input filters, output reactors, output filters, DC reactors, braking units and braking resistors).
3. Check that the VFD is installed on non-flammable materials and the calorific accessories (reactors and braking resistors) are away from flammable materials.
4. Check that all control cables and power cables are run separately and the layout complies with EMC requirement.
5. Check that all grounding systems are properly grounded according to the VFD requirements.
6. Check that the free space during installation is sufficient according to the instructions in user's manual.
7. Check that the installation conforms to the instructions in user's manual. The drive must be installed in an upright position.
8. Check that the external connection terminals are tightly fastened and the torque is appropriate.
9. Check that there are no screws, cables and other conductive items left in the VFD. If not, get them out.

2.6 Basic commissioning

Complete the basic commissioning as followings before actual utilization:

1. Select the motor type, set correct motor parameters and select control mode of the VFD according to the actual motor parameters.
2. Autotune. If possible, de-coupled from the motor load to start dynamic autotune. Or if not, static autotune is available.
3. Adjust the ACC/DEC time according to the actual running of the load.
4. Commission the device via jogging and check that the rotation direction is as required. If not, change the rotation direction by changing the wiring of motor.
5. Set all control parameters and then operate.

3 Product overview

3.1 What this chapter contains

The chapter briefly describes the operation principle, product characteristics, layout, nameplate and type designation information.

3.2 Basic principles

KOC560 series VFD are wall, flange and floor mountable devices for controlling asynchronous AC inductance motors.

The diagram below shows the main circuit diagram of the VFD. The rectifier converts three-phase AC voltage to DC voltage. The capacitor bank of the intermediate circuit stabilizes the DC voltage. The converter transforms the DC voltage back to AC voltage for the AC motor. The brake pipe connects the external braking resistor to the intermediate DC circuit to consume the feedback energy when the voltage in the circuit exceeds its maximum limit.

Figure 3-1 Main circuit diagram (for the 30KW and lower models)

Figure 3-2 Main circuit diagram (for the 30KW and higher models)

Note:

1. The 30 KW and higher models support external optional DC reactors. Before connecting, it is necessary to remove the copper strip between P1 and (+).
2. The 30KW and lower models have standard embedded braking units and the braking resistor is optional.
3. The 30 KW and higher models can be installed with optional braking units and the braking unit and resistor are optional.

3.3 Product specifications

Function		Specification
Input	Input voltage (V)	AC 3PH 220V(-15\%)~240V(+10\%) Default 220v AC 3PH 380V(-15\%)~440V(+10\%) Default 380v AC 3PH 520V(-15\%)~690V(+10\%) Default 660v
	Input current (A)	See Rated specifications.
	Input frequency (Hz)	50 Hz or 60 Hz Allowed range: $47-63 \mathrm{~Hz}$
Output	Output voltage (V)	0~Input voltage
	Output current (A)	See Rated specifications.
	Output power (kW)	See Rated specifications.
	Output frequency (Hz)	$0-400 \mathrm{~Hz}$
Technical control feature	Control mode	SVPWM, SVC
	Motor type	Asynchronous motor
	Speed ratio	Asynchronous motor 1:100 (sensorless vector control)
	Speed control accuracy	$\pm 0.2 \%$ (sensorless vector control)
	Speed fluctuation	$\pm 0.3 \%$ (sensorless vector control)
	Torque response	<20ms(sensorless vector control)
	Torque control accuracy	10\%(sensorless vector control)
	Starting torque	Asynchronous motor: $0.5 \mathrm{~Hz} / 150 \%$ (SVC)
	Overload capability	G Type: 150\% of rated current: 1 minute 180% of rated current: 10 seconds 200% of rated current: 1 second
Running control feature	Frequency setting	Digital setting, analog setting, pulse frequency setting, multi-step speed running setting, simple PLC setting, PID setting, MODBUS communication setting. Shift between the set combination and set channel.
	Auto voltage adjustment	Keep a stable voltage automatically when the grid voltage transients
	Fault protection	Provide over 30 fault protection functions: overcurrent, overvoltage, undervoltage, overheating, phase loss and overload, etc.

Function		Specification
	Speed tracking	Restart the rotating motor smoothly Note: This function is available for the 4 KW and higher models.
Peripheral interface	Terminal analog input resolution	$\leq 20 \mathrm{mV}$
	Terminal switch input resolution	$\leq 2 \mathrm{~ms}$
	Analog input	$\begin{aligned} & 1 \text { channels (Al2) } 0-10 \mathrm{~V} /-20 \mathrm{~mA} \text { and } 1 \text { channel (Al3) - } \\ & 10-10 \mathrm{~V}\end{aligned}$
	Analog output	2 channels (AO1, AO2) $0-10 \mathrm{~V} / 0-20 \mathrm{~mA}$
	Digital input	8 channels common input, max. frequency: 1 kHz , internal impedance: $3.3 \mathrm{k} \Omega$; 1 channel high speed input, max. frequency: 50 kHz
	Digital output	1 channel high speed pulse output, max. frequency: 50 kHz ; 1 channel Y terminal open collector pole output
	Relay output	2 channels programmable relay output RO1A NO, RO1B NC, RO1C common terminal RO2A NO, RO2B NC, RO2C common terminal Contactor capability: 3A/AC250V,1A/DC30V
Others	Mountable method	Wall, flange and floor mountable
	Temperature of the running environment	$-10-50^{\circ} \mathrm{C}$, derating is required if the temperature is above $40^{\circ} \mathrm{C}$. If the ambient temperature is above $40^{\circ} \mathrm{C}$, derate used
	Ingress protection	IP20
	Cooling	Air-cooling
	Pollution level	Level 2
	Braking unit	Built in 30kw and lower models for other models, it is an optional part.
	EMC filter	380 V series products can meet the requirements of IEC61800-3 C3 External optional filter: meet the requirement of IEC61800-3 C2

3.4 Nameplate

Figure 3-3 Nameplate
Note: This is the example of the nameplate for the standard products, and CE\TUYIP20 will be marked according to the actual situations.

3.5 Type designation key

The type designation contains information on the VFD. The user can find the type designation on the type designation label attached to the VFD or the simple nameplate.

Figure 3-4 Product type

Key	Instructions
(1)	KOC560 : KOC560 inverter
(2)	$5 R 5: 5.5 \mathrm{KW}$
	G: Constant torque load
(4:3PHASE $\quad 4: 380 \mathrm{~V}$	
(6)	B:BRAKE

3.6 Rated specifications

VFD model	Constant torque			Variable torque		
	Output power (kW)	Input current (A)	Output current (A)	Output power (kW)	Input current (A)	Output current (A)
KOC560-R75GT4-B	0.75	3.4	2.5	1	$/$	1
KOC560-1R5GT4-B	1.5	5.0	3.7	1	1	1
KOC560-2R2GT4-B	2.2	5.8	5	1	1	1

VFD model	Constant torque			Variable torque		
	Output power (kW)	Input current (A)	Output current (A)	Output power (kW)	Input current (A)	Output current (A)
KOC560-004GT4-B	4	13.5	9.5	5.5	19.5	14
KOC560-5R5GT4-B	5.5	19.5	14	7.5	25	18.5
KOC560-7R5GT4-B	7.5	25	18.5	11	32	25
KOC560-011GT4-B	11	32	25	15	40	32
KOC560-015G/018P-4	15	40	32	18.5	47	38
KOC560-018G/022P-4	18.5	47	38	22	56	45
KOC560-022G/030P-4	22	56	45	30	70	60
KOC560-030G/037P-4	30	70	60	37	80	75
KOC560-037G/045P-4	37	80	75	45	94	92
KOC560-045G/055P-4	45	94	92	55	128	115
KOC560-055G/075P-4	55	128	115	75	160	150
KOC560-075G/090P-4	75	160	150	90	190	180
KOC560-090G/110P-4	90	190	180	110	225	215
KOC560-110G/132P-4	110	225	215	132	265	260
KOC560-132G/160P-4	132	265	260	160	310	305
KOC560-160G/185P-4	160	310	305	185	345	340
KOC560-185G/200P-4	185	345	340	200	385	380
KOC560-200G/220P-4	200	385	380	220	430	425
KOC560-220G/250P-4	220	430	425	250	485	480
KOC560-250G/280P-4	250	485	480	280	545	530
KOC560-280G/315P-4	280	545	530	315	610	600
KOC560-315G/355P-4	315	610	600	355	625	650
KOC560-355G/400P-4	355	625	650	400	715	720
KOC560-400G-4	400	715	720	$/$	$/$	$/$
KOC560-450G-4	450	840	820	$/$	$/$	$/$
KOC560-500G-4	500	890	860	$/$	$/$	$/$

Note:

1. The input current of the $0.75 \mathrm{KW} \sim 315 \mathrm{KW}$ models is measured when the input voltage is 380 V and no DC reactor and input/output reactor.
2. The input current of the $350 \sim 500 \mathrm{KW}$ models is measured when the input voltage is 380 V and the circuit is with input reactor.
3. The rated output current is defined as the output current when the output voltage is 380 V .
4. In the allowable voltage range, the output power and current cannot exceed the rated output power and current in any situation.
3.7 Structure diagram

Figure 3-4 Product structure diagram

Serial No.	Name	Illustration
1	Keypad port	Connect the keypad
2	Upper cover	Protect the internal parts and components
3	Keypad	See Keypad operation for detailed information
4	Cooling fan	See Maintenance and hardware diagnostics for detailed information
5	Wires port	Connect to the control board and the drive board
6	Nameplate	See Product overview for detailed information
7	Side cover	Optional part. The side cover will increase the protective degree of the VFD. The internal temperature of the VFD will increase, too, so it is necessary to derate the VFD at the same time
8	Control terminals	See Installation guidelines for detailed information
9	Main circuit terminals	See Installation guidelinesf or detailed information
10	Main circuit cable entry	Fix the main circuit cable
11	POWER light	Power indicator
12	Simple nameplate	See Product overview for detailed information
13	Lower cover	Protect the internal parts and components

4 Installation guidelines

4.1 What this chapter contains

The chapter describes the mechanical installation and electric installation.

| - Only qualified electricians are allowed to carry out what described in this |
| :---: | :---: | :---: |
| chapter. Please operate as the instructions in chapter1 Safety precautions. |
| Ignoring these may cause physical injury or death or damage to the devices. |
| - Ensure the power supply of the VFD is disconnected during the operation. Wait |
| for at least the time designated until the POWER indicator is off after the |
| disconnection if the power supply is applied. It is recommended to use the |
| multimeter to monitor that the DC bus voltage of the drive is under 36 V . |
| - The installation and design of the VFD should be complied with the requirement |
| of the local laws and regulations in the installation site. If the installation |
| infringes the requirement our company will exempt from any responsibility. |
| Additionally, if users do not comply with the suggestion, some damage beyond |
| the assured maintenance range may occur. |

4.2 Mechanical installation

4.2.1 Installation environment

The installation environment is important for a full performance and long-term stable functions of the VFD. Check the installation environment as followings:

Environment	Conditions
Installation site	Indoor
$-10-+50^{\circ} \mathrm{C}$ If the ambient temperature of the VFD is above $40^{\circ} \mathrm{C}$, derate 1% for every additional $1^{\circ} \mathrm{C}$. It is not recommended to use the VFD if the ambient temperature is above $50^{\circ} \mathrm{C}$. In order to improve the reliability of the device, do not use the VFD if the temperature ambient temperature changes frequently. Please provide cooling fan or air conditioner to control the internal ambient temperature below the required one if the VFD is used in a close space such as in the control cabinet. When the temperature is too low, if the VFD needs to restart to run after a long stop, it is necessary to provide an external heating device to increase the internal temperature, otherwise damage to the devices may occur.	

Environment	Conditions
Storage temperature	-30 to $+60^{\circ} \mathrm{C}$
	The installation site of the VFD should meet the following requirements Away from the electromagnetic radiation source; Away from contaminative air, such as corrosive gas, oil mist and Running environment condition
flammable gas; Ensure foreign objects, such as metal power, dust, oil, water cannot enter into the VFD (do not install the VFD on the flammable materials such as wood); Away from direct sunlight, oil mist, steam and vibration environment .	
Altitude	Below 1000 meters When the installation site altitude exceeds 1000m, derate 1% for every increase of 100 m.
Vibration	$\leq 5.8 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$

Note:

- KOC560 series VFD should be installed in a clean and ventilated environment according to enclosure classification.
- Cooling air must be clean, free from corrosive materials and electrically conductive dust.

4.2.2 Installation direction

The VFD may be installed on the wall or in a cabinet.
The VFD must be installed in an upright position. Check the installation site according to the requirements below. For frame details, please see AppendixBDimension drawings.

Figure 4-1 Installation direction of the VFD

4.2.3 Installation manner

The VFD can be installed in three different ways, depending on the frame size:
a) Wall mounting (for the 315 KW and lower models)
b) Flange mounting (for the 200 KW and lower models). Some need optional flange installation board.
c) Floor mounting (for the $220 \mathrm{KW}-500 \mathrm{KW}$ models). Some need optional base.

Figure 4-2 Installation manner
(1) Mark the hole location. The location of the holes is shown in the dimension drawings in the appendix.
(2) Fix the screws or bolts to the marked locations.
(3) Position the drive onto the wall.
(4) Tighten the screws in the wall securely.

Note:

- The flange installation bracket is needed in the flange installation of the $0.75 \mathrm{KW}-30 \mathrm{KW}$, models while the flange installation of the 37KW~200KW models does not need the installation bracket.
- The 220KW~315KW models need optional base in the floor installation.

4.2.4 Multiple installations

Parallel installation

Figure 4-3 Parallel installation

Note:

- Before installing the different size VFD, please align their top position for the convenience of later maintenance.
- The minimum space of B, D and C is 100 mm .

4.2.5 Vertical installation

Figure 4-4 Vertical installation
Note: Windscreen should be added in vertical installation for avoiding mutual impact and insufficient cooling.

4.2.6 Tilt installation

Figure 4-5 Tilt installation
Note: Ensure the separation of the wind input and output channels in tilt installation for avoiding mutual impact.

4.3 Standard wiring

4.3.1 Wiring diagram of main circuit

Figure 4-6 Main circuit wiring diagram

Note:

- The fuses, DC reactors, braking units, braking resistors, input reactors, input filters, output reactors and output filters are optional parts. Please refer toPeripheral options and partsfor detailed information.
- A1 and A2 are optional parts for the 18.5 KW and higher models.
- P1 and (+) are short circuited in factory, if need to connect with the DC rector, please remove the contact tag between P1 and (+).
- Before connecting the braking resistor cable, remove the yellow labels of PB, (+), and (-) from the terminal blocks. Otherwise, poor connection may occur.

4.3.2 Terminals figure of main circuit

Figure 4-7 Main circuit terminals for the $0.75 \mathrm{KW}-5.5 \mathrm{KW}$ models

Figure 4- 8 Main circuit terminals for the $7.5 \mathrm{KW} \sim 15 \mathrm{KW}$ models

Figure 4-9 Main circuit terminals for the 18.5 KW model

Figure 4-10 Main circuit terminals for the $22 \mathrm{KW} \sim 30 \mathrm{KW}$ models

Figure 4-11 Main circuit terminals for the 37KW~55KW models

Figure 4-12 Main circuit terminals for the 75-110KW models

Figure 4-13 Main circuit terminals for the $132 \mathrm{KW} \sim 200 \mathrm{KW}$ models

Figure 4-14 Main circuit terminals for the 220KW-315KW models

Figure 4-15 Main circuit terminals for the $355 \mathrm{KW}-500 \mathrm{KW}$ models

Terminal	Terminal name		Function
	For the 030KW and lower models	For the 37KW and higher models	
R, S, T	Power input of the main circuit	3-phase AC input terminals which are generally connected with the power supply.	
U, V, W	The VFD output	3-phase AC output terminals which are generally connected with the motor.	

Terminal	Terminal name				
	For the 030G/037P and lower models	For the 037G/045P and higher models			
	This terminal is inexistent	DC reactor terminal 1			Function and (+) are connected with the
:---:					

Note:

- Do not use an asymmetrically constructed motor cable. If there is a symmetrically constructed grounding conductor in the motor cable in addition to the conductive shield, connect the grounding conductor to the grounding terminal at the VFD and motor ends.
- Braking resistor, braking unit and DC reactor are optional parts.
- Route the motor cable, input power cable and control cables separately.
- If the terminal is not appeared, the machine does not provide the terminal as the external terminal.

4.3.3 Wiring of terminals in main circuit

1. Connect the ground line of input power cable to the ground terminal (PE) of VFD directly, and connect 3 PH input cable to R, S and T and fasten up.
2. Connect the ground line of motor cable to the ground terminal of the VFD, and connect the 3PH motor cable to $\mathrm{U}, \mathrm{V}, \mathrm{W}$ and fasten up.
3. Connect the brake resistor which carries cables to the designated position.
4. Fasten up all the cables on the outside of the VFD if allowed.

Figure 4-16 Correct installation of the screw

4.3.4 Wiring diagram of control circuit

Figure 4-18 Wiring diagram of the control circu

4.3.5 Terminals of control circuit

Figure 4-19 Control circuit terminals for the 18.5 KW and lower models

Figure 4-20 Control circuit terminals for the 22KW and lower models

Note: the spare terminal is reserved and not be used.

Terminal name	\quad Description
HDO	1. Switch output: $50 \mathrm{~mA} / 30 \mathrm{~V}$ 2. Output frequency range: $0 \quad-50 \mathrm{kHz}$
COM	+24 V common terminal

Terminal name	Description
RO2A	RO2 relay output, RO2A NO, RO2B NC, RO2C common terminal
RO2B	
RO2C	

4.3.6 Input /Output signal connection figure

Please use U-shaped contact tag to set NPN mode or PNP mode and the internal or external power supply. The default setting is NPN internal mode.

Figure 4-21 U-shaped contact tag
If the signal is from NPN transistor, please set the U-shaped contact tag between +24 V and PW as below according to the used power supply.

Internal power supply (NPN)

External power supply (NPN)

Figure 4-22 NPN modes
If the signal is from PNP transistor, please set the U-shaped contact tag as below according to the used power supply.

Internal power supply (PNP)

External power supply (PNP)

Figure 4-23 PNP modes

4.4 Layout protection

4.4.1 Protecting the VFD and input power cable in short-circuit situations

Protect the VFD and input power cable in short circuit situations and against thermal overload.
Arrange the protection according to the following guidelines.

Figure 4-24 Fuse configuration
Note: Select the fuse as the manual indicated. The fuse will protect the input power cable from damage in short-circuit situations. It will protect the surrounding devices when the internal of the VFD is short circuited.

4.4.2 Protecting the motor and motor cable in short-circuit situations

The VFD protects the motor and motor cable in a short-circuit situation when the motor cable is dimensioned according to the rated current of the VFD. No additional protection devices are needed.

- If the VFD is connected to multiple motors, a separate thermal overload switch or a circuit breaker must be used for protecting each cable and motor. These devices may require a separate fuse to cut off the short-circuit current.

4.4.3 Protecting the motor against thermal overload

According to regulations, the motor must be protected against thermal overload and the current must be switched off when overload is detected. The VFD includes a motor thermal protection function that protects the motor and closes the output to switch off the current when necessary.

4.4.4 Implementing a bypass connection

It is necessary to set power frequency and variable frequency conversion circuits for the assurance of continuous normal work of the VFD if faults occur in some significant situations.

In some special situations, for example, if it is only used in soft start, the VFD can be converted into power frequency running after starting and some corresponding bypass should be added.

| - Never connect the supply power to the VFD output terminals U, V and W . |
| :--- | :--- |
| Power line voltage applied to the output can result in permanent damage to the |
| VFD. |

If frequent shifting is required, employ mechanically connected switches or contactors to ensure that the motor terminals are not connected to the AC power line and VFD output terminals simultaneously.

5 Keypad operation procedure

5.1 What this chapter contains

This chapter contains following operation:

- Buttons, indicating lights and the screen as well as the methods to inspect, modify and set function codes by keypad

5.2 Keypad

The keypad is used to control KOC560 series VFD, read the state data and adjust parameters.

Note:

- A in Figure 5 - 1 shows the keypad of the $0.75 \mathrm{kw} \sim 18.5 \mathrm{kw}$ models, and also shows that of the 22kw~500kw models.
- The $0.75 \mathrm{kw} \sim 18.5 \mathrm{kw}$ models support optional LED keypads and all series support optional LCD keypads. The LCD keypad supports several languages, parameters copy, high-definition display and its installation dimension is compatible with the LED.
- Use M3 strew or installation bracket to fix the external keypad. The keypad installation brackets are optional for the $0.75 \mathrm{KW} \sim 30 \mathrm{KW}$ models, while keypad installation brackets are standard configuration for the $37 \mathrm{KW} \sim 500 \mathrm{KW}$ models.

No.	Name	Description	
1	State LED	RUN/TUNE	LED off - the VFD is stopped LED blinking - the VFD is in parameter auto tune LED on - the VFD is running

No.	Name	Description			
		FWD/REV		LED off - the VFD will run in the forward direction LED on - the VFD will run in the reverse direction	
				LED indicates keypad operation, terminal operation and remote communication control	
		LOCAL	REMOT	LED off - the VFD is in keypad operation mode LED blinking - the VFD is in terminal operation mode LED on - the VFD is in remote operation control mode	
		TRIP		LED for faults	
				LED on - the VFD is faulty LED off - normal state LED blinking - the VFD is in pre-alarm, and will trip soon without corrective actions	
2	Unit LED	Mean the unit displayed currently			
				Hz	Frequency unit
				RPM	Rotation speed unit
				A	Current unit
				\%	Percentage
				V	Voltage unit
3	Code displaying zone	5 -figure LED display displays various monitoring data and alarm code such as set frequency and output frequency.			
4	Analog potentiometer	Equal to Al1. Applicable to the 15 KW and lower models.			
	Digital potentiometer	Tuning frequency. Please refer to F08.42. Applicable to the 18.5 KW and higher models.			
5	Buttons	PRG Eca	Programming key	Enter or escape from the first level menu and delete shortcut parameter	
		DATA	Entry key	Enter the menu step-by-step Confirm parameters	

No.	Name	Description		
		A	UP key	Increase data or function code progressively
			DOWN key	Decrease data or function code progressively
			Right-shift key	Move right to select the displaying parameter circularly in stopping and running mode. Select the parameter modifying digit during the parameter modification
		RUN \downarrow	Run key	This key is used to operate on the VFD in keypad operation mode
		$\bigcirc \frac{\text { STOP }}{\text { RST }}$	Stop/ Reset key	This key is used to stop in running state and it is limited by function code F07.04 This key is used to reset all control modes in the fault alarm state
		$\underbrace{\text { auick }}$	Quick key	The function of this key is confirmed by function code F07.02.

5.3 Keypad displaying

The keypad displaying state of KOC560 series VFD is divided into stopping state parameter, running state parameter, function code parameter editing state and fault alarm state and so on.

Stopped state

Running state

Fault state

Figure 5-2 Displayed state

5.4 Keypad operation

Operate the VFD via operation panel. See the detailed structure description of function codes in the brief diagram of function codes.

5.4.1 How to modify the function codes of the VFD

The VFD has three levels menu, which are:

1. Group number of function code (first-level menu)
2. Tab of function code (second-level menu)
3. Set value of function code (third-level menu)

Remarks: Press both the PRG/ESd and the DATA/ENT can return to the second-level menu from the third-level menu. The difference is: pressing DATA/ENT will save the set parameters into the control panel, and then return to the second-level menu with shifting to the next function code automatically; while pressing PRG/ESC will directly return to the second-level menu without saving the parameters, and keep staying at the current function code.

Under the third-level menu, if the parameter has no flickering bit, it means the function code cannot be modified. The possible reasons could be:

1) This function code is not modifiable parameter, such as actual detected parameter, operation records and so on;
2) This function code is not modifiable in running state, but modifiable in stop state.

Example: Set function code F00.01 from 0 to 1.

Note: When setting the value, you can press and modify the value.

Figure 5-3 Sketch map of modifying parameters

5.4.2 How to set the password of the VFD

KOC560 series VFD provides the user password protection function. When you set F07.00 to a non-zero value, the value is the user password. After you exit the function code editing interface, the password protection function is enabled within 1 minute. If password protection is enabled, "0.0.0.0.0" is displayed when you press the PRG/ESC key again to enter the function code editing interface. You need to enter the correct user password to enter the interface.

To disable the password protection function, you need only to set F07.00 to 0 .

Figure 5-4 Sketch map of password setting

5.4.3 How to watch the VFD state through function codes

KOC560 series VFD provide group F17 as the state inspection group. Users can enter into F17 directly to watch the state.
\qquad
$0 \quad 0 \quad 0 \quad 1$

Figure 5-5 Sketch map of state watching

Note: When setting the value, you can press $\sqrt[>]{\frac{>}{\text { SHFT }}}$ and $\nabla+\mathbf{D}$ modify the value.

6 Function parameters

6.1 What this chapter contains

This chapter lists and describes the function parameters.

6.2 KOC560 general series function parameters

The function parameters of KOC560 series VFD have been divided into 30 groups (F00-F29) according to the function, of which F18~F23, F25~F28 are reserved. Each function group contains certain function codes applying 3 -level menus. For example, "F08.08" means the eighth function code in the F8 group function, F29 group is factory reserved, and users are forbidden to access these parameters.

For the convenience of function codes setting, the function group number corresponds to the first level menu, the function code corresponds to the second level menu and the function code corresponds to the third level menu.

1. Below is the instruction of the function lists:

The first column "Function code": codes of function parameter group and parameters;
The second column "Name": full name of function parameters;
The third column "Description": detailed illustration of the function parameters;
The fourth column "Default value": the original factory set value of the function parameter;
The fifth column "Modify": the modifying character of function codes (the parameters can be modified or not and the modifying conditions), below is the instruction:
" O ": means the set value of the parameter can be modified on stop and running state;
" \bigcirc ": means the set value of the parameter cannot be modified on the running state;
"•": means the value of the parameter is the real detection value which cannot be modified.
" \bullet ": : means Indicates that the value of this parameter is hidden and cannot be viewed or changed.
(The VFD has limited the automatic inspection of the modifying character of the parameters to help users avoid inadvertent modification).

The sixth column: "number"means Sequence number of the function code in the whole function code.
2. "Parameter radix" is decimal (DEC), if the parameter is expressed by hex, then the parameter is separated from each other when editing. The setting range of certain bits are $0-F$ (hex).
3. "The default value" means the function parameter will restore to the default value during default parameters restoring. But the detected parameter or recorded value won't be restored.
4. For a better parameter protection, the VFD provides password protection to the parameters. After setting the password (set F07.00 to any non-zero number), the system will come into the state of password verification firstly after the user press PRG/ESZ to come into the function code editing state. And then "0.0.0.0.0." will be displayed. Unless the user input right password, they cannot enter into the system. For the factory setting parameter zone, it needs correct factory password (remind that the users cannot modify the factory parameters by themselves, otherwise, if the parameter setting is incorrect, damage to the VFD may occur). If the password protection is unlocked, the user can modify the password freely and the VFD will work as the last setting one. When F07.00 is set to 0 , the password can be canceled. If F07.00 is not 0 during powering on, then the parameter is protected by the password. When modify the parameters by serial communication, the function of the password follows the above rules, too.

F00 Group Basic functions

Functio n code	Name	Description	Default value	Modify	NO.
F00.00	Speed control mode	1: Sensorless vector control mode 1 (applying to AM) No need to install encoders. It is suitable in cases with high speed control accuracy for accurate speed and torque control at all power ratings. 2: SVM control (applying to AM) It is suitable for occasions where the control accuracy is not required, such as fans, pumps and other loads. It can be used for driving multiple motors with one frequency converter Note: AM-Asynchronous motor	2	\bigcirc	0.
F00.01	Run command channel	Select the run command channel of the VFD. The control command of the VFD includes: start, stop, forward, reverse, jogging and fault reset. 0 : Keypad running command channel("LOCAL/REMOT" light off) Carry out the command control by RUN\|, \square on the keypad. Set the multi-function key \qquad QUICK/JOG as FWD/REV shifting function (F07.02=3) to change the running direction; press RUN and STOP/RST simultaneously in running state to make the VFD coast to stop. 1: Terminal running command channel ("LOCAL/REMOT" flickering) Carry out the running command control by the forward rotation, reverse rotation and forward jogging and reverse jogging of the multi-function	0	\bigcirc	1.

Functio n code	Name	Description	Default value	Modify	NO.
		2: Communication running command channel ("LOCAL/REMOT" on); The running command is controlled by the upper monitor via communication.			
F00.02	Communicatio n selection	0 : MODBUS communication	0	\bigcirc	2.
F00.03	Max. output frequency	This parameter is used to set the Maximum output frequency of the VFD. Users should pay attention to this parameter because it is the foundation of the frequency setting and the speed of acceleration and deceleration. Setting range:F00.04-400.00Hz	50.00 Hz	\bigcirc	3.
F00.04	Upper limit of the running frequency	The upper limit of the running frequency is the upper limit of the output frequency of the VFD which is lower than or equal to the maximum frequency. Setting range:F00.05-F00.03(max. output frequency)	50.00 Hz	\bigcirc	4.
F00.05	Lower limit of the running frequency	The lower limit of the running frequency is that of the output frequency of the VFD. The VFD runs at the lower limit frequency if the set frequency is lower than the lower limit one. Note: Max. output frequency \geq Upper limit frequency \geq Lower limit frequency Setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.04$ (Upper limit of the running frequency)	0.00 Hz	\bigcirc	5.
F00.06	A frequency command		0	\bigcirc	6.

F00.07	B frequency command	Note: Frequency A and frequency B cannot use the same frequency setting mode. The frequency source can be set byF00.09. 0 : Keypad data setting Modify the value ofF00.10(set the frequency by keypad) to modify the frequency by the keypad. 1: Analog Al1 setting (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 2: Analog AI2 setting	2	\bigcirc	7.

| Functio
 n code | Name | Description | Default
 value | Modify |
| :--- | :--- | :--- | :--- | :--- | NO. | No |
| :--- |

Functio n code	Name	Description	Default value	Modify	NO.
		F00.06=6 orF00.07=6. Set F05 to select the current running step, and set F10 to select the current running frequency. The multi-step speed has the priority whenF00.06 orF00.07does not equal to 6 , but the setting step can only be the $1-15$ steps. The setting step is $0-15$ ifF00.06orF00.07equals 6. 7: PID control setting The running mode of the VFD is process PID control whenF00.06=7 orF00.07=7. It is necessary to set F09. The running frequency of the VFD is the value after PID effect. See F09 for the detailed information of the preset source, preset value, and feedback source of PID. 8: MODBUS communication setting The frequency is set by MODBUS communication. See F14 for detailed information.			
F00.08	B frequency command reference	0 : Maximum output frequency, 100% of B frequency setting corresponds to the maximum output frequency 1: A frequency command, 100% of B frequency setting corresponds to the maximum output frequency. Select this setting if it needs to adjust on the base of A frequency command.	0	\bigcirc	8.
F00.09	Combination of the setting source	0 : A, the current frequency setting is A frequency command 1: B, the current frequency setting is B frequency command 2: $A+B$, the current frequency setting is A frequency command +B frequency command 3: A-B, the current frequency setting is A frequency command - B frequency command 4: $\operatorname{Max}(A, B)$: the bigger one between A frequency command and B frequency is the set frequency.	0	\bigcirc	9.

	5: Min (A, B): The lower one between A frequency command and B frequency is the set frequency. Note: The combination manner can be shifted by F05(terminal function)			

Function code	Name	Description	Default value	Modify	NO.
F00.10	Keypad set frequency	When A and B frequency commands are selected as "keypad setting", this parameter will be the initial value of VFD reference frequency Setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency)	50.00 Hz	\bigcirc	10
F00.11	ACC time 1	ACC time means the time needed if the VFD speeds up from OHz to the max. one (FOO .03). DEC time means the time needed if the VFD speeds down from the max. output frequency to 0 Hz (F00.03).	Model depended	\bigcirc	11
F00.12	DEC time 1	KOC560 series VFD define four groups of ACC/DEC time which can be selected by P05. The factory default ACC/DEC time of the VFD is the first group. Setting range ofF00.11 andF00.12: 0.0-3600.0s	Model depended	\bigcirc	12
F00.13	Running direction	0 : Runs at the default direction, the VFD runs in the forward direction. FWD/REV indicator is off. 1: Runs at the opposite direction, the VFD runs in the reverse direction. FWD/REV indicator is on. Modify the function code to shift the rotation direction of the motor. This effect equals to the shifting the rotation direction by adjusting either two of the motor lines (U, V and W). In keypad control, the motor rotation direction can be changed by DUICK/JOd on the keypad. Refer to parameterF07.02. Note: When the function parameter comes back to the default value, the motor's running direction will come back to the factory default state, too. In some cases it should be used with caution after commissioning if the change of rotation direction is disabled. 2: Forbid to run in reverse direction: It can be used in some special cases if the reverse running is disabled.	0	\bigcirc	13

Function	Name	Description				Default value	Modify	NO.
F00.14	Carrier frequency setting	The advan current wa and motor The disad increasing temperatu The VFD frequency electrical Applying above, too unstable r The manu frequency users do n When the carrier fre for each a Setting ran	etween mode Model KW-11KW N-55KW and higher tage of high veform, little noise. vantage of high the switch los e and the imp eeds to dera At the same magnetic inter w carrier freq low carrier fr unning, torque acturer has s when the VFD ot need to ch requency us uency, the V dditional 1 k ca ge: 1.0-15.0	ls and carrier arrier frequen urrent harmo carrier frequ s, increasing act to the out e on high carr time, the leak erence will in uency is contr equency will c decreasing a et a reasonab is in factory. ange the para d exceeds the D needs to d arrier frequenc kz	Heating eliminating requencies: setting arrier ency Hz Hz Hz y : ideal ic wave ncy: VF ut capacity. er ge and ease. ary to the use d surge. carrier In general, meter. default rate 10%	Model depended	\bigcirc	14
F00.15	Motor parameter autotuning	0 : No ope 1: Rotatio Compreh	ation autotuning nsive motor p	rameter auto		0	\bigcirc	15

Functio n code	Name	Description	Default value	Modify	NO.
		It is recommended to use rotation autotuning when high control accuracy is needed. 2: Static autotuning 1 It is suitable in the cases when the motor cannot de-couple from the load. 3: Static autotuning 2 It is suitable in the cases when the motor cannot de-couple form the load. But only for parts of parameters.			
F00.16	AVR function selection	0: Invalid 1: Valid during the whole procedure The auto-adjusting function of the VFD can cancel the impact on the output voltage of the VFD because of the bus voltage fluctuation.	1	\bigcirc	16.
F00.17	VFD type	0 : G type, for the constant torque load of rated parameters 1: P type; for the variable torque load of rated parameters (fans and water pumps) KOC560 series VFD can use G/P type, the available motor power of G type is small one power file than that of P type.	0	\bigcirc	17.
F00.18	Function restore parameter	0 : No operation 1: Restore the default value 2: Clear fault records 3: Lock the keypad Note: The function code is restored to 0 after the operation corresponding to the selected option is performed. Restoring to the default value will cancel the user password. Exercise caution before using this function. WhenF00.18=3, all the other function codes exceptF00.18are read only.	0	\bigcirc	18.

F01 Group Start and stop control

Functio n code	Name	Description	Default value	Modify	NO.
F01.00	Start mode	0: Start directly: start from the starting frequency F01.01 1: Start after DC braking: start the motor from the starting frequency after DC braking (set the parameterF01.03andF01.04). It is suitable in the cases where reverse rotation may occur to the low inertia load during starting. 2: Start after speed tracking Start the rotating motor smoothly after tracking the rotation speed and direction automatically. It is suitable in the cases where reverse rotation may occur to the big inertia load during starting. Note: This function is available for the 4 KW and higher models.	0	\bigcirc	19.
F01.01	Starting frequency of direct start	Starting frequency of direct start means the original frequency during the VFD starting. See F01.02for detailed information. Setting range: $0.00-50.00 \mathrm{~Hz}$	0.50 Hz	©	20.
F01.02	Retention time of the starting frequency	Set a proper starting frequency to increase the torque of the VFD during starting. During the retention time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD will run from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the VFD will stop running and keep in the standby	0.0s	\bigcirc	21.

Function code	Name	Description	Default value	Modify	NO.
		state. The starting frequency is not limited in the lower limit frequency. Setting range: $0.0-50.0 \mathrm{~s}$			
F01.03	The braking current before starting	The VFD will carry out DC braking at the braking current set before starting and it will speed up after the DC braking time. If the DC braking time is set	0.0\%	\bigcirc	22.
F01.04	The braking time before starting	to 0 , the DC braking is invalid. The stronger the braking current, the bigger the braking power. The DC braking current before starting means the percentage of the rated output current of the VFD. Setting range of F01.03: 0.0-100.0\% Setting range of F01.04: 0.00-50.00s	0.00s	\bigcirc	23.
F01.05	ACC/DEC selection	The changing mode of the frequency during start and running. 0 : Linear type The output frequency increases or decreases linearly. 1: S curve: Output frequency increases/decreases gradually based on S curve. S curve is used in cases where smooth start/stop is required, such as elevator, conveyer belt, etc.	0	©	24.

Functio n code	Name	Description	Default value	Modify	NO.
F01.06	ACC time of the starting step of S curve	0.0-50.0s	0.1s	\bigcirc	25
F01.07	DEC time of the ending step of S curve		0.1s	\bigcirc	26
F01.08	Stop mode	0: Decelerate to stop: after the stop command becomes valid, the VFD decelerates to reduce the output frequency during the set time. When the frequency decreases to 0 Hz , the VFD stops. 1: Coast to stop: after the stop command becomes valid, the VFD ceases the output immediately. And the load coasts to stop at the mechanical inertia.	0	\bigcirc	27
F01.09	Starting frequency of DC braking	Starting frequency of DC braking: start the DC braking when running frequency reaches starting frequency determined byF01.09. Waiting time before DC braking: VFD block the output before starting the DC braking. After this waiting time, the DC braking will be started so as to prevent over-current fault caused by DC braking at high speed.	0.00 Hz	\bigcirc	28
F01.10	Waiting time before DC braking		0.00s	\bigcirc	29
F01.11	DC braking current		0.0\%	\bigcirc	30

F01.12	DC braking time	DC braking current: The value ofF01.11is the percentage of rated current of VFD. The bigger the DC braking current is, the greater the braking torque is. DC braking time: The retention time of DC brake. If the time is 0 , the DC brake is invalid. The VFD will stop at the set deceleration time. Setting range of $\mathrm{F} 01.09: 0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency)	0.00s	O	31

Functio n code	Name	Description	Default value	Modify	NO,
		Setting range of $F^{01.10: ~ 0.00-50.00 s ~}$ Setting range ofF01.11: 0.0-100.0\% Setting range ofF01.12: 0.00-50.00s			
F01.13	Dead time of FWD/REV rotation	During the procedure of switching FWD/REV rotation, set the threshold byF01.14, which is as the table below: Setting range: 0.0-3600.0s	0.0s	\bigcirc	32.
F01.14	Shifting between FWD/REV rotation	Set the threshold point of the VFD: 0 : Switch after 0 frequency 1: Switch after the starting frequency 2: Switch after the stopping speed	0	©	33.
F01.15	Stopping speed	$0.00-100.00 \mathrm{~Hz}$	0.50 Hz	(34.
F01.16	Detection of stopping speed	0 : Detect according to speed setting (no stopping delay) 1: Detect according to speed feedback (only valid for vector control)	1	©	35.
F01.17	Detection time of the feedback speed	IfF01.16is set to 1 , the feedback frequency is less than or equal toF01.15and detect in the set time ofF01.17, the VFD will stop; otherwise the VFD will stop after the set time ofF01.17. Setting range: $0.00-100.00$ s (only valid when F01.16=1)	0.50s	©	36.

Functio n code	Name	Description	Default value	Modify	NO.
F01.18	Operation protection during powering on	When the running command channel is the terminal control, the system will detect the state of the running terminal during powering on. 0 : The terminal running command is invalid when powering on. Even the running command is detected to be valid during powering on, the VFD won't run and the system keeps in the protection state until the running command is canceled and enabled again. 1: The terminal running command is valid when powering on. If the running command is detected to be valid during powering on, the system will start the VFD automatically after the initialization. Note: This function should be selected with cautions, or serious result may follow.	0	\bigcirc	37
F01.19	Action selection when running frequency is lower than lower limit of frequency (valid when low limit of frequency is larger than 0)	This function code determines the running state of the VFD when the set frequency is lower than the lower-limit one. 0 : Run at the frequency lower limit 1: Stop 2: Hibernation Tens place: Stop mode The VFD will sleeps or stops as set in Tens place when the set frequency is lower than the lower-limit one, If the set frequency is above the lower limit one again and it lasts for the time set byF01.20, the VFD will come back to the running state automatically.	0	\bigcirc	38

Functio n code	Name	Description	Default value	Modify	NO.
F01.20	Wake-up-fromsleep delay	This function code determines the wake-up-from-sleep delay. When the running frequency of the VFD is lower than the lower limit one, the VFD will pause to stand by. When the set frequency is above the lower limit one again and it lasts for the time set byF01.20, the VFD will run automatically. Note: The time is the total value when the set frequency is above the lower limit one. Setting range:0.0~3600.0S (valid whenF01.19=2)	0.0s	\bigcirc	39.
F01.21	Restart after power off	This function can enable the VFD start or not after the power off and then power on. 0 : Disable 1: Enable, if the starting need is met, the VFD will run automatically after waiting for the time defined byF01.22.	0	\bigcirc	40.
F01.22	The waiting time of restart after power off	The function determines the waiting time before the automatic running of the VFD when powering off and then powering on.	1.0s	\bigcirc	41.

		Setting range: $0.0-3600.0 \mathrm{~s}$ (valid whenF01.21=1)			
F01.23	Start delay time	The function determines the brake release after the running command is reference, and the VFD is in a stand-by state and the delay time set by F01.23to wait. Setting range: $0.0-60.0 \mathrm{~s}$	0.0s	O	42.
F01.24	Delay time of the stop spee	Setting range: $0.0-100.0 \mathrm{~s}$	0.0s	\bullet	43.
F01.25	OHz output selection	output selection when inverter OHz 0 : Output without voltage 1: Output with voltage 2: Output at the DC braking current	0	\bullet	44.

Functio n code	Name		Description	Default value	Modify	NO.
F02.01	Rated power of AM 1	0.1-3000.0kW	To ensure control performance, setF02.01-F02.05according to the AM nameplate. KOC560 provides the parameter self-learning function. Accurate parameter self-learning is based on the correct settings of motor nameplate parameters. Perform motor configuration according to the mapping between VFD and motors. If the motor power is far from the power of the motor that matches the VFD, the control performance of the VFD deteriorates sharply. Note: Resetting the rated motor power (F02.01) will initialize F02.02-F02.10.	Model depended	\bigcirc	45.
F02.02	Rated frequency of AM 1	$0.01 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max.output frequency)		50.00 Hz	\bigcirc	46.
F02.03	Rated speed of AM 1	1-36000rpm		Model depended	O	47.
F02.04	Rated voltage of AM 1	0-1200V		Model depended	O	48.
F02.05	Rated current of AM 1	0.8-6000.0A		Model depended	\bigcirc	49.
F02.06	Stator resistor of AM 1	0.001-65.535Q	After motor parameter self-learning is completed	Model depended	O	50

Function code	Name	Description	Default value	Modify	NO.
F02.07	Rotor resistor of AM 1	$\begin{array}{l\|l} \text { 0.001-65.535 } & \begin{array}{l} \text { successfully, in rotary } \\ \text { self-learning and static } \end{array} \end{array}$	Model depended	\bigcirc	51.
F02.08	Leakage inductance of AM 1	$0.1-6553.5 \mathrm{mH}$ self-learning 1, the settings of F02.06-F02.10can be updated automatically. In static	Model depended	\bigcirc	52.
F02.09	Mutual inductance of AM 1	$0.1-6553.5 \mathrm{mH}$ self-learning mode 2, the settingsofF02.06-F02.08can be updated automatically. These	Model depended	\bigcirc	53.
F02.10	Non-load current of AM 1	parameters are the basic parameters for the VFD to control the motor and have direct impact on control performance. Note: Exercise caution before modifying these parameters.	Model depended	\bigcirc	54.
F02.26	Motor 1 overload protection	0: No protection 1: Common motor (with low speed compensation). Because the heat-releasing effect of the common motors will be weakened, the corresponding electric heat protection will be adjusted properly. The low speed compensation characteristic mentioned here means reducing the threshold of the overload protection of the motor whose running frequency is below 30 Hz . 2: Variable frequency motor (without low speed compensation) Because the heat-releasing effect of the specific motors won't be impacted by the rotation speed, it is not necessary to adjust the protection value during low-speed running.	2	O	55.

F02.27	Motor 1 over load protection coefficient	Times of motor overload $\mathrm{M}=$ lout/(In*K) In is the rated current of the motor, lout is the output current of the VFD and K is the motor protection coefficient. So, the bigger the value of K is, the smaller the value of M is. When $M=116 \%$, protection is performed after motor overload lasts for 1 hour; when $M=150 \%$, protection is performed after motor overload lasts for 12 minutes; when $\quad \mathrm{M}=180 \%$, protection is performed after motor	100.0\%	\bigcirc	56.

Functio n code	Name	Description	Default value	Modify	NO.
		overload lasts for 5 minutes; when $\mathrm{M}=200 \%$, protection is performed after motor overload lasts for 60 seconds; and when $\mathrm{M} \geq 400 \%$, protection is performed immediately. Setting range: $20.0 \%-120.0 \%$			
F02.28	Correction coefficient of motor 1 power	Correct the power displaying of motor 1 . Only impact the displaying value other than the control performance of the VFD. Setting range: $0.00-3.00$	1.00	\bullet	57

F03 Group Vector control

Functio n code	Name	Description	Default value	Modify	NO.
F03.00	Speed loop proportional gain1	The parametersF03.00-F03.05only apply to vector control mode. Below the switching frequency 1 (P03.02), the speed loop PI parameters are:F03.00andF03.01. Above the switching frequency 2 (F03.05), the speed loop PI parameters are:F03.03andF03.04. PI parameters are gained according to the linear change of two groups of parameters. It is shown as below:	20.0	\bigcirc	58
F03.01	Speed loop integral time1		0.200s	\bigcirc	59
F03.02	Low switching frequency		5.00 Hz	\bigcirc	60
F03.03	Speed loop proportional gain 2		20.0	\bigcirc	61
F03.04	Speed loop integral time 2		0.200s	\bigcirc	62
F03.05	High switching frequency		10.00 Hz	\bigcirc	63

Functio n code	Name	Description	Default value	Modify	NO.
		Setting the proportional coefficient and integral time of the adjustor can change the dynamic response performance of vector control speed loop. Increasing the proportional gain and decreasing the integral time can speed up the dynamic response of the speed loop. But too high proportional gain and too low integral time may cause system vibration and overshoot. Too low proportional gain may cause system vibration and speed static deviation. PI has a close relationship with the inertia of the system. Adjust on the base of PI according to different loads to meet various demands. Setting range ofF03.00: 0-200.0 Setting range ofF03.01: 0.000-10.000s Setting range ofF03.02: $0.00 \mathrm{~Hz}-\mathrm{F} 03.05$ Setting range ofF03.03: 0-200.0 Setting range ofF03.04: 0.000-10.000s Setting range ofF03.05:F03.02- F00.03 (the max. output frequency)			
F03.06	Speed loop output filter	$0-8$ (corresponds to 0-2 ${ }^{8} / 10 \mathrm{~ms}$)	0	\bigcirc	64.
F03.07	Compensation coefficient of electro motion slip	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system.	100\%	\bigcirc	65.
F03.08	Compensation coefficient of braking slip	Adjusting the parameter properly can control the speed steady-state error. Setting range: 50-200\%	100\%	\bigcirc	66.
F03.09	Current loop percentage coefficient P	Note:	1000	\bigcirc	67.

| | 1 These two parameters adjust the PI
 adjustment parameter of the current loop which
 affects the | | |
| :--- | :--- | :--- | :--- | :--- |

Functio n code	Name	Description	Default value	Modify	NO.
F03.10	Current loop integral coefficient 1	dynamic response speed and control accuracy directly. Generally, users do not need to change the default value. 2 Only apply to SVC control mode 0 ($\mathrm{FOO} \cdot 00=0$). Setting range: 0-65535	1000	\bigcirc	68.
F03. 11	Torque setting method	This parameter is used to enable the torque control mode, and set the torque. 0 : Torque control is invalid 1: Keypad setting torque (F03.12) 2: Analog Al1 setting torque (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 3: Analog AI2 setting torque 4: Analog Al3 setting torque 5: Pulse frequency HDI setting torque 6: Multi-step torque setting 7: MODBUS communication setting torque Note: For setting modes 2-10, 100\% corresponds to three times of the rated current of the motor.	0	\bigcirc	69.
F03.12	Keypad setting torque	Setting range: - $300.0 \%-300.0 \%$ (rated current of the motor)	50.0\%	\bigcirc	70.
F03.13	\qquad	0.000-10.000s	0.010s	\bigcirc	71.
F03.14	Upper frequency of forward rotation in vector control	$\begin{aligned} & \text { 0: Keypad (F03.16setsF03.14,F03.17sets } \\ & \text { F03.15) } \\ & \text { 1: Al1 (implemented through the analog } \\ & \text { potentiometer on the keypad for the } 15 \mathrm{KW} \text { and } \end{aligned}$	0	\bigcirc	72.

F03.15	Upper frequency of reverse rotation in vector control	lower models; not available for the 18.5 KW and higher models.) 2: Al2 3: Al3 4: Pulse frequency HDI setting upper-limit frequency 5: Multi-step setting upper-limit frequency 6: MODBUS communication setting upper-limit frequency Note: For setting method 1-9, 100\% corresponds to the maximum frequency	0	O	73.

Function code	Name	Description	Default value	Modify	NO.
F03.16	Keypad setting for upper frequency of forward rotation	This function is used to set the upper limit of the frequency.F03.16sets the value ofF03.14;	50.00 Hz	\bigcirc	74.
F03.17	Keypad setting for upper frequency of reverse rotation	Setting range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. output frequency)	50.00 Hz	\bigcirc	75.
F03.18	Upper electro motion torque source	This function code is used to select the electro motion and braking torque upper-limit setting	0	O	76.
F03.19	Upper braking torque source	source selection. 0 : Keypad setting upper-limit frequency (F03.20 setsF03.18,F03.21 setsF03.19) 1: Al1 (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 2: Al2 3: Al3 4: HDI 5: MODBUS communication Note: For setting mode 1-8, 100\% corresponds to three times of the motor current.	0	\bigcirc	77.
F03.20	Keypad setting of electromotion torque	The function code is used to set the limit of the torque.	180.0\%	\bigcirc	78.
F03.21	Keypad setting of braking torque	Setting range: 0.0-300.0\% (rated motor current)	180.0\%	\bigcirc	79.
F03.22	Weakening coefficient in constant power zone	The usage of motor in weakening control. Weaking coefficient	0.3	\bigcirc	80.
F03.23	Lowest weakening point in constant power		20\%	\bigcirc	81.

Functio n code	Name	Description	Default value	Modify	NO.
	zone	Function codesF03.22 andF03.23are effective at constant power. The motor will enter into the weakening state when the motor runs at rated speed. Change the weakening curve by modifying the weakening control coefficient. The bigger the weakening control coefficient is, the steeper the weak curve is. Setting range of $F^{03.22: ~ 0.1-2.0 ~}$ Setting range of F03.23: 10\%-100\%			
F03.24	Max. voltage limit	F03.24sets the max. voltage of the VFD, which is dependent on the site situation. The setting range: 0.0-120.0\%	100.0\%	\bigcirc	82.
F03.25	Pre-exciting time	Reactivate the motor when the VFD starts up. Build up a magnetic field inside the VFD to improve the torque performance during the starting process. The setting time: $0.000-10.000$ s	0.300s	\bigcirc	83.
F03.26	Weak magnetic proportional gain	$0-8000$ Note:F03.24-F03.26are invalid for vector mode.	1000	\bigcirc	84.
F03.27	Vector control speed	0 : Display the actual value 1: Display the setting value	0	\bigcirc	85.
F03.28	Compensation coefficient of static friction	$0.0-100.0 \%$ AdjustF03.28to compensate the coefficient of static friction. Only valid when setting in 1 Hz .	0.0\%	O	86.
F03.29	Compensation coefficient of dynamic friction	$0.0-100.0 \%$ AdjustF03.29to compensate the coefficient of static friction. Only valid when setting in 1 Hz .	0.0\%	\bigcirc	87.

F04 Group SVPWM control

Functio n code	Name	Description	Default value	Modify	NO.
F04.00	Motor 1 V/F curve setting	These function codes define the V/F curve of KOC560 motor 1, and meet the need of different loads. 0: Straight line V/F curve; applying to the constant torque load	0	0	88.

Functio n code	Name	Description	Defaul t value	Modify	NO.
		1: Multi-dots V/F curve 2: Torque down V/F curve (power of 1.3) 3: Torque down V/F curve (power of 1.7) 4: Torque down V/F curve (power of 2.0) Curves 2-4 apply to the torque loads such as fans and water pumps. Users can adjust according to the features of the loads to achieve a best energy-saving effect. 5: Customized V/F (V/F separation); in this mode, V can be separated from f and f can be adjusted through the frequency reference channel set by F00.06or the voltage reference channel set by F04.27to change the feature of the curve. Note: V_{b} in the below picture is the motor rated voltage and f_{b} is the motor rated frequency.			
F04.01	Motor 1 torque boost	Torque boost is used for the compensation of low frequency torque.F04.01 is relative to the max. output voltage V_{b}. F04.02defines the percentage of closing frequency of manual torque to f_{b}. Torque boost should be selected according to the load. The bigger the load is, the bigger the torque is. Too big torque boost is inappropriate because the motor will run with over magnetic, and the current of the VFD will increase to	0.0\%	\bigcirc	89.

F04.02	Motor 1 torque boost close	add the temperature of the VFD and decrease the efficiency. When the torque boost is set to 0.0%, the VFD is automatic torque boost. Torque boost threshold: below this frequency point, the torque boost is effective, but over this frequency point, the torque boost is invalid.	20.0\%	O	90.

Functio n code	Name	Description	Default value	Modify	NO.
		 Setting range ofF04.01: 0.0\%: (automatic) $0.1 \%-10.0 \%$ Setting range ofF04.02: 0.0\%-50.0\%			
F04.03	V/F frequency 1 of motor 1		0.00 Hz	\bigcirc	91.
F04.04	V/F voltage 1 of motor 1		00.0\%	\bigcirc	92.
F04.05	V/F frequency 2 of motor 1	WhenF04.00=1, the user can set V/F curve throughF04.03-F04.08.	00.00 Hz	\bigcirc	93.
F04.06	V/F voltage 2 of motor 1	V/F is generally set according to the load of the motor.	00.0\%	\bigcirc	94.
F04.07	V/F frequency 3 of motor 1	Note: $\mathrm{V} 1<\mathrm{V} 2<\mathrm{V} 3, \mathrm{f} 1<\mathrm{f} 2<\mathrm{f} 3$. Too high low frequency voltage will heat the motor excessively or damage. The overcurrent speed or overcurrent	00.00 Hz	\bigcirc	95.
F04.08	V/F voltage 3 of motor 1	protection may occur to the VFD. Setting range ofF04.03: $0.00 \mathrm{~Hz}-\mathrm{F} 04.05$ Setting range ofF04.04: 0.0\%-110.0\% Setting range ofF04.05:F04.03-F04.07 Setting range ofF04.06: 0.0\%-110.0\% (the rated voltage of motor 1) Setting range ofF04.07:F04.05-F02.02 (the rated frequency of motor 1) Setting range ofF04.08: 0.0\%-110.0\% (the rated voltage of motor 1)	00.0\%	\bigcirc	96.

		This function code is used to compensate the change of the rotation speed caused by load during compensation SVPWM control to F04.09	V/F slip compensation gain of motor 1	the rated slip frequency of the motor which is the counted as below: $\Delta \mathrm{f}=\mathrm{f}_{\mathrm{b}} \mathrm{n}^{*} \mathrm{p} / 60$

Functio n code	Name	Description	Default value	Modify	NO.
		Of which, f_{b} is the rated frequency of the motor, its function code isF02.02; n is the rated rotating speed of the motor and its function code is F02.03; p is the pole pair of the motor. 100.0% corresponds to the rated slip frequency Δf. Setting range: 0.0-200.0\%			
F04.10	Motor 1 low frequency vibration control factor	In the SVPWM control mode, current fluctuation may occur to the motor on some frequency, especially the motor with big power. The motor	10	\bigcirc	98.
F04.11	Motor 1 high frequency vibration control factor	cannot run stably or overcurrent may occur. These phenomena can be canceled by adjusting this parameter. Setting range ofF04.10: 0-100	10	\bigcirc	99.
F04.12	Motor 1 vibration control threshold	Setting range ofF04.11: 0-100 Setting range ofF04.12: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$ (the max. frequency)	30.00 Hz	\bigcirc	100
F04.26	Energy-saving operation selection	0 : No action 1: Automatic energy-saving operation Motor on the light load conditions, automatically adjusts the output voltage to save energy	0	\bigcirc	$\stackrel{101}{.}$
F04.27	Voltage setting channel	Select the output setting channel at V/F curve separation. 0 : Keypad setting voltage: the output voltage is determined byF04.28. 1: Al1 setting voltage (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 2: Al2 setting voltage; 3: Al3 setting voltage; 4: HDI setting voltage; 5: Multi-step speed setting voltage; 6: PID setting voltage; 7: MODBUS communication setting voltage; Note: 100% corresponds to the rated voltage of the motor.	0	\bigcirc	

Functio n code	Name	Description	Default value	Modify	NO.
F04.28	Keypad setting voltage	The function code is the voltage digital set value when the voltage setting channel is selected as "keypad selection" The setting range: 0.0\%-100.0\%	100.0\%	\bigcirc	103
F04.29	Voltage increasing time	Voltage increasing time is the time when the VFD accelerates from the output minimum voltage to the output maximum voltage. Voltage decreasing time is the time when the VFD decelerates from the output maximum voltage to the output minimum voltage. The setting range: $0.0-3600.0$ s	5.0s	\bigcirc	104
F04.30	Voltage decreasing time		5.0s	\bigcirc	105
F04.31	Maximum output voltage	Set the upper and low limit of the output voltage. Setting range ofF04.31:F04.32-100.0\% (the rated voltage of the motor) Setting range ofF04.32: 0.0\%-F04.31 (the rated voltage of the motor)	100.0\%	O	106
F04.32	Minimum output voltage		0.0\%	O	107
F04.33	Flux weakening coefficient at constant power	Used to adjust the output voltage of VFD in SVPWM mode during flux weakening. Note: Invalid in constant-torque mode. Setting range ofF04.33: 1.00-1.30	1.00	\bullet	108

F05 Group Input terminals

Function code	Name	Description	Default value	Modify	NO.
F05.00	HDI input	0: HDI is high pulse input. SeeF05.50-F05.54 $1:$ HDI is switch input	0	0	109

Functio n code	Name	Description	Default value	Modify	NO.
F05.01	S1 terminal function selection	0 : No function 1: Forward rotation 2: Reverse rotation	1	O	110
F05.02	S2 terminal function selection	3: 3-wire control 4: Forward jogging 5: Reverse jogging	4	\bigcirc	111
F05.03	S3 terminal function selection	6: Coast to stop 7: Fault reset 8: Operation pause 9: External fault input	7	\bigcirc	112
F05.04	S4 terminal function selection	10: Increasing frequency setting(UP) 11: Decreasing frequency setting(DOWN) 12: Cancel the frequency change setting	0	\bigcirc	113
F05.05	S5 terminal function selection	13: Shift between A setting and B setting 14: Shift between combination setting and A setting	0	\bigcirc	114
F05.06	S6 terminal function selection	setting 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2	0	\bigcirc	115
F05.07	S7 terminal function selection	18: Multi-step speed terminal 3 19: Multi- step speed terminal 4 20: Multi- step speed pause	0	\bigcirc	116
F05.08	S8 terminal function selection	21: ACC/DEC time option terminal 1 22: ACC/DEC time option terminal 2 23: Simple PLC stop reset	0	\bigcirc	117
F05.09	HDI terminal function selection	25: PID control pause 26: Traverse Pause(stop at the current frequency) 27: Traverse reset(return to the center frequency) 28: Counter reset 29: Torque control prohibition 30: ACC/DEC prohibition 31: Counter trigger 32: Length reset 33: Cancel the frequency change setting temporarily 34: DC brake 36: Shift the command to the keypad 37: Shift the command to the terminals 38: Shift the command to the communication	0	\bigcirc	118

Function code	Name	Description	Default value	Modify	NO.
F05.13	Terminals control running mode	Set the operation mode of the terminals control 0: 2-wire control 1 , comply the enable with the direction. This mode is widely used. It determines the rotation direction by the defined FWD and REV terminals command. 1: 2-wire control 2 ; Separate the enable from the direction. FWD defined by this mode is the enabling ones. The direction depends on the state of the defined REV. 2: 3 -wire control 1 ; Sin is the enabling terminal on this mode, and the running command is caused by FWD and the direction is controlled by REV. Sin is natural closed.	0	\bigcirc	122

Functio n code	Name	Description	Default value	Modify	NO.
F05.14	S1 terminal switching-on delay time	The function code defines the corresponding delay time of electrical level of the programmable terminals from switching on to switching off. Setting range: 0.000-50.000s	0.000s	\bigcirc	123
F05.15	S1 terminal switching-off delay time		0.000s	\bigcirc	124
F05.16	S2 terminal switching-on delay time		0.000s	\bigcirc	125
F05.17	S2 terminal switching-off delay time		0.000s	\bigcirc	126
F05.18	S3 terminal switching-on delay time		0.000s	\bigcirc	127
F05.19	S3 terminal switching-off delay time		0.000s	\bigcirc	128
F05.20	S4 terminal switching-on delay time		0.000s	\bigcirc	129
F05.21	S4 terminal switching-off delay time		0.000s	\bigcirc	130
F05.22	S5 terminal switching-on delay time		0.000s	\bigcirc	131
F05.23	S5 terminal switching-off delay time		0.000s	\bigcirc	132
F05.24	S6 terminal switching-on delay time		0.000s	\bigcirc	133
F05.25	S6 terminal switching-off delay time		0.000s	\bigcirc	134
F05.26	S7 terminal switching-on delay time		0.000s	\bigcirc	135

Function code	Name	Description	Default value	Modify	NO.
F05.27	S7 terminal switching-off delay time		0.000s	\bigcirc	136
F05.28	S8 terminal switching-on delay time		0.000s	\bigcirc	137
F05.29	S8 terminal switching-off delay time		0.000s	\bigcirc	138
F05.30	HDI terminal switching-on delay time		0.000s	\bigcirc	139
F05.31	HDI terminal switching-off delay time		0.000s	\bigcirc	140
F05.32	Lower limit of Al1		0.00V	\bigcirc	141
F05.33	Corresponding setting of the lower limit of Al1	Al1 setting is implemented through the analog potentiometer on the keypad for the 15 KW and lower models but is not available for the 18.5 KW	0.0\%	\bigcirc	142
F05.34	$\begin{gathered} \text { Upper limit of } \\ \text { Al1 } \\ \hline \end{gathered}$	implemented through the control terminal Al2. Al3 setting is implemented through the control	10.00 V	\bigcirc	143
F05.35	Corresponding setting of the upper limit of Al1	terminal Al3. The function code defines the relationship between the analog input voltage and its	100.0\%	\bigcirc	144
F05.36	Al1 input filter time	voltage beyond the set minimum or maximum input value, the VFD will count at the minimum or	0.100s	\bigcirc	145
F05.37	Lower limit of Al2	maximum one.	0.00 V	\bigcirc	146
F05.38	Corresponding setting of the lower limit of Al2	corresponding voltage of $0-20 \mathrm{~mA}$ is $0-10 \mathrm{~V}$. In different cases, the corresponding rated value of 100.0% is different. See the application for	0.0\%	\bigcirc	147
F05.39	Upper limit of Al2	The figure below illustrates different applications:	10.00V	\bigcirc	148
F05.40	Corresponding setting of		100.0\%	\bigcirc	149

Function code	Name	Description	Default value	Modify	NO.
	the upper limit of AI2				
F05.41	Al2 input filter time		0.100s	\bigcirc	150
F05.42	Lower limit of Al3	$\underset{1}{1}$	-10.00V	\bigcirc	151
F05.43	Corresponding setting of the lower limit of Al3	Input filter time: this parameter is used to adjust	-100.0\%	\bigcirc	152
F05.44	Middle value of Al3	the sensitivity of the analog input. Increasing the value properly can enhance the anti-interference	0.00 V	\bigcirc	153
F05.45	Corresponding middle setting of Al3	of the analog, but weaken the sensitivity of the analog input Note: Analog Al1 and Al2 can support $0-10 \mathrm{~V}$ or	0.0\%	\bigcirc	154
F05.46	Upper limit of Al3	$0-20 \mathrm{~mA}$ input, when Al1 and Al2 selects $0-$ 20 mA input, the corresponding voltage of	10.00 V	\bigcirc	155
F05.47	Corresponding setting of the upper limit of Al3	20 mA is 10 V . Al 3 can support the input of $-10 \mathrm{~V}-+10 \mathrm{~V} .$ Setting range ofF05.32: 0.00V-F05.34 Setting range ofF05.33: -100.0\%-100.0\%	100.0\%	\bigcirc	156
F05.48	Al3 input filter time	Setting range ofF05.35: - $100.0 \%-100.0 \%$ Setting range ofF05.36: 0.000s-10.000s Setting range ofF05.37: 0.00V-F05.39 Setting range ofF05.38: - 100.0\%-100.0\% Setting range ofP05.39:F05.37-10.00V Setting range of F05.40: -100.0\%-100.0\% Setting range ofF05.41: 0.000s-10.000s Setting range ofF05.42: -10.00V-F05.44 Setting range ofF05.43: - 100.0\%-100.0\% Setting range ofF05.44:F05.42-F05.46 Setting range ofF05.45: -100.0\%-100.0\% Setting range ofF05.46:F05.44-10.00V Setting range ofF05.47: -100.0\%-100.0\% Setting range ofF05.48: 0.000s-10.000s	0.100s	\bigcirc	157
F05.50	Lower limit frequency of HDI	0.000kHz-F05.52	$\begin{gathered} 0.000 \\ \mathrm{kHz} \end{gathered}$	\bigcirc	158

Function code	Name	Description	Default value	Modify	NO.
F05.51	Corresponding setting of HDI low frequency setting	$-100.0 \%-100.0 \%$	0.0%	O	159
F05.52	Upper limit frequency of HDI	F05.50-50.00kHz	50.00		
F05.53	Corresponding setting of upper limit frequency of HDI	$-100.0 \%-100.0 \%$	0	160	
F05.54	HDI frequency input filter time	$0.000 \mathrm{~s}-10.000 \mathrm{~s}$	100.0%	O	161

F06 Group Output terminals

Function code	Name	Description	Default value	Modify	NO.
F06.00	HDO output	The function selection of the high-speed pulse output terminals. 0: Open collector pole high speed pulse output: The max. pulse frequency is 50.0kHz. See F06.27-F06.31for detailed information of the related functions. 1: Open collector pole output. SeeF06.02for detailed information of the related functions.	0	0	163
F06.01	Youtput	0: Invalid 1: In operation	0	0	164
F06.02	HDO output	0	0	165	
F06.03	Relay RO1 output	2: Forward rotation 3: Reverse rotation 4: Jogging 5: The VFD fault 6: Frequency degree test FDT1 7: Frequency degree test FDT2 8: Frequency arrival 9: Zero speed running (output at running state) 10: Upper limit frequency arrival 11: Lower limit frequency arrival	0	166	
	Relay RO2 output	5	0	167	

Functio n code	Name	Description				Default value	Modify	NO.
		12: Ready for operation 13: Pre-magnetizing 14: Overload pre-alarm 15: Underload pre-alarm 16: Completion of simple PLC step 17: Completion of simple PLC cycle 18: Setting count value arrival 19: Defined count value arrival 20: External fault valid 21: Zero speed running (output at both running and stop state) 22: Running time arrival 23: MODBUS communication virtual terminals outpu 24: To-ground short circuit output pre-alarm (P08.23 must be set to 1.) 26: DC bus voltage establishment 27: Auxiliary motor 1 28: Auxiliary motor 2						
F06.05	Polarity selection of output terminals	The function code is used to set the pole of the output terminal. When the current bit is set to 0 , output terminal is positive. When the current bit is set to 1 , output terminal is negative. Setting range: $0-F$				0	\bigcirc	16
F06.06	Y1 switching-on delay time	The function code defines the corresponding delay time of the electrical level change during the programmable terminal switching on and off. The setting range: $0.000-50.000 \mathrm{~s}$ Note:F06.08andF06.09are valid only when F06.00=1.				0.000s	\bigcirc	169
F06.07	Y1 switching-off delay time					0.000s	\bigcirc	170
F06.08	HDO switching-on delay time					0.000s	\bigcirc	171
F06.09	HDO switching-off delay time					0.000s	\bigcirc	172

Functio n code	Name	Description	Default value	Modify	NO.
F06.10	RO1 switching-on delay time		0.000s	\bigcirc	173
F06.11	RO1 switching-off delay time		0.000s	\bigcirc	174
F06.12	RO2 switching-on delay time		0.000s	\bigcirc	175
F06.13	RO2 switching-off delay time		0.000s	O	176
F06.14	AO1 output	0 : Running frequency	0	\bigcirc	177
F06.15	AO2 output	1: Setting frequency	0	\bigcirc	178
F06.16	HDO high-speed pulse output selection	2: Ramp reference frequency 3: Running rotation speed (relative to twice the motor synchronization rotation speed) 4: Output current (relative to twice the VFD rated current) 5: Output current (relative to twice the motor rated current) 6: Output voltage (relative to 1.5 times the rated voltage of the VFD) 7: Output power (relative to twice the rated power of the motor) 9: Output torque (relative to twice the rated torque of the motor) 10: Analog Al1 input value (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 11: Analog Al2 input value 12: Analog Al3 input value 13: High speed pulse HDI input value 14: MODBUS communication set value 1 15: MODBUS communication set value 2 22: Torque current (relative to triple the motor rated current) 23: Ramp reference frequency(with sign)	0	\bigcirc	179

Functio n code	Name	Description	Default value	Modify	NO.
F06.17	Lower limit of AO1 output	The above function codes define the relative relationship between the output value and analog output. When the output value exceeds the range of set maximum or minimum output, it will count according to the low-limit or upper-limit output. When the analog output is current output, 1 mA equals to 0.5 V . In different cases, the corresponding analog output of 100% of the output value is different. A	0.0\%	\bigcirc	180
F06.18	Corresponding AO1 output to the lower limit		0.00V	\bigcirc	181
F06.19	Upper limit of AO1 output		100.0\%	\bigcirc	182
F06.20	Corresponding AO1 output to the upper limit		10.00 V	\bigcirc	183
F06.21	AO1 output filter time		0.000s	\bigcirc	184
F06.22	Lower limit of AO2 output		0.0\%	\bigcirc	185
F06.23	Corresponding AO2 output to the lower limit		0.00 V	\bigcirc	186
F06.24	Upper limit of AO2 output		100.0\%	\bigcirc	187
F06.25	Corresponding AO2 output to the upper limit	Setting range ofF06.18: 0.00V-10.00V Setting range ofF06.19: P06.17-100.0\% Setting range ofF06.20: $0.00 \mathrm{~V}-10.00 \mathrm{~V}$ Setting range ofF06.21: $0.000 \mathrm{~s}-10.000 \mathrm{~s}$ Setting range ofF06.22: 0.0\%-F06.24 Setting range ofF06.23: $0.00 \mathrm{~V}-10.00 \mathrm{~V}$ Setting range ofF06.24:F06.22-100.0\% Setting range ofF06.25: 0.00V-10.00V Setting range ofF06.26: 0.000s-10.000s Setting range ofF06.27: $0.000 \mathrm{~s}-10.000 \mathrm{~s}$ Setting range ofF06.28: $0.00-50.00 \mathrm{kHz}$ Setting range ofF06.29:F06.27-100.0\% Setting range ofF06.30: $0.00-50.00 \mathrm{kHz}$ Setting range ofF06.31: 0.000s-10.000s	10.00 V	\bigcirc	188
F06.26	AO2 output filter time		0.000s	\bigcirc	189
F06.27	Lower limit of HDO output		0.00\%	\bigcirc	190
F06.28	Corresponding HDO output to the lower limit		0.00 kHz	\bigcirc	191
F06.29	Upper limit of HDO output		100.0\%	\bigcirc	192
F06.30	Corresponding HDO output to the upper limit		$\begin{gathered} 50.00 \\ \mathrm{kHz} \end{gathered}$	\bigcirc	193
F06.31	HDO output filter time		0.000s	\bigcirc	194

F07 Group Human-Machine Interface

Functio n code	Name	Description	Default value	Modify	NO.
F07.00	User's password	0-65535 The password protection will be valid when setting any non-zero number. 00000: Clear the previous user's password, and make the password protection invalid. After the user's password becomes valid, if the password is incorrect, users cannot enter the parameter menu. Only correct password can make the user check or modify the parameters. Please remember all users' passwords. Retreat editing state of the function codes and the password protection will become valid in 1 minute. If the password is available, press PRG/ESD to enter into the editing state of the function codes, and then "0.0.0.0.0" will be displayed. Unless input right password, the operator cannot enter into it. Note: Restoring to the default value can clear the password, please use it with caution.	0	\bigcirc	195
F07.01	Paramete r copy	The function code determines the mode of parameters copy. 0 : No operation 1: Upload the local function parameter to the keypad 2: Download the keypad function parameter to local address(including the motor parameters) 3: Download the keypad function parameter to local address (excluding the motor parameter of P02 group) 4: Download the keypad function parameters to local address (only for the motor parameter of F02 group) Note: After completing the 1-4 operations, the parameter will come back to 0 automatically. The function of upload and download excludes the factory parameters of F29.	0	\bigcirc	196
F07.02		Ones: Function of QUICK/JOG key 0 : No function	0×01	\bigcirc	197

| function | 1: Jogging. Press QUICK/JOG to begin the |
| :--- | :--- | selection

| Functio
 n code | Name | Description | Default
 value | Modify |
| :--- | :--- | :--- | :--- | :--- | NO. | N |
| :--- |

Functio n code	Name	Description	Default value	Modify	NO.
F07.04	STOP/RST stop function	STOP/RST is valid for stop function. STOP/RST\| is valid in any state for the fault reset. 0 : Only valid for the keypad control 1: Both valid for keypad and terminals control 2: Both valid for keypad and communication control 3: Valid for all control modes	0	\bigcirc	199
F07.05	Parameter s state 1	0x0000-0xFFFF BITO: running frequency (Hz on) BIT1: set frequency (Hz flickering) BIT2: bus voltage (Hz on) BIT3: output voltage (V on) BIT4: output current (A on) BIT5: running rotation speed (rpm on) BIT6: output power (\% on) BIT7: output torque (\% on) BIT8: PID reference (\% flickering) BIT9: PID feedback value (\% on) BIT10: input terminals state BIT11: output terminals state BIT12: torque set value (\% on) BIT13: pulse counter value BIT14: length value BIT15: PLC and the current stage in multi-step speed	0x03FF	\bigcirc	200
F07.06	Parameter s state 2	0x0000-0xFFFF BIT0: Al1 (V on) (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18 KW and higher models.) BIT1: Al2 (V on) BIT2: Al3 (V on) BIT3: HDI frequency BIT4: motor overload percentage (\% on) BIT5: the VFD overload percentage (\% on) BIT6: ramp frequency given value $(\mathrm{Hz}$ on) BIT7: linear speed BIT8: AC inlet current (A on) BIT9: upper limit frequency (Hz on)	0x0000	\bigcirc	201

Functio n code	Name	Description	Default value	Modify	
F07.07	The parameter in the stop state	0x0000-0xFFFF BITO: set frequency (Hz on, frequency flickering slowly) BIT1: bus voltage (V on) BIT2: input terminals state BIT3: output terminals state BIT4: PID reference (\% flickering) BIT5: PID feedback value (\% flickering) BIT6: reserved BIT7: analog Al1 value (V on) (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) BIT8: analog Al2 value (V on) BIT9: analog AI3 value (V on) BIT10: high speed pulse HDI frequency BIT11: PLC and the current step in multi-step speed BIT12: pulse counters BIT14: upper limit frequency (Hz on)	0x00FF	\bigcirc	202
F07.08	Frequency coefficient	$\begin{aligned} & \text { 0.01-10.00 } \\ & \text { Displayed frequency=running frequency*F07.08 } \end{aligned}$	1.00	\bigcirc	203
F07.09	Rotation speed coefficient	$0.1-999.9 \%$ Mechanical rotation speed $=120^{*}$ displayed running frequency \times F07.09/motor pole pairs	100.0\%	\bigcirc	204
F07.10	Linear speed coefficient	$\begin{aligned} & 0.1-999.9 \% \\ & \text { Linear speed }=\text { Mechanical rotation speed } \times F 07.10 \end{aligned}$	1.0\%	\bigcirc	205
F07.11	Rectifier bridge module temperature	$0-100.0^{\circ} \mathrm{C}$	1	\bullet	206
F07.12	IGBT module temperature	$0-100.0^{\circ} \mathrm{C}$	1	\bullet	207
F07.13	Software version	1.00-655.35	1	\bullet	208
F07.14	Local accumulative running time	0-65535h	1	\bullet	209

Functio n code	Name	Description	Default value	Modify	NO.
F07.15	High bit of power consumption	Display the power used by the VFD. The power consumption of the VFD	1	\bullet	210
F07.16	Low bit of power consumption	Setting range ofF07.15: 0-65535 kWh (*1000) Setting range ofF07.16: 0.0-999.9 kWh	1	\bullet	211
F07.17	VFD type	0 : G type 1: P type	1	\bullet	212
F07.18	Rated power of the VFD	0.4-3000.0kW	1	\bullet	213
F07.19	Rated voltage of the VFD	50-1200V	/	\bullet	214
F07.20	Rated current of the VFD	0.1-6000.0A	1	\bullet	215
F07.21	Factory bar code 1	0x0000-0xFFFF	1	\bullet	216
F07.22	Factory bar code 2	0x0000-0xFFFF	1	\bullet	217
F07.23	Factory bar code 3	0x0000-0xFFFF	1	\bullet	218
F07.24	Factory bar code 4	0x0000-0xFFFF	1	\bullet	219
F07.25	Factory bar code 5	0x0000-0xFFFF	1	\bullet	220
F07.26	Factory bar code 6	0x0000-0xFFFF	1	\bullet	221
F07.27	Type of present fault	0: No fault 1: IGBT U phase protection (OUt1)	1	\bullet	222
F07.28	Type of the last fault	2: IGBT V phase protection (OUt2) 3: IGBT W phase protection (OUt3)	1	\bullet	223
F07.29	Type of the last but one fault	$\begin{aligned} & \text { 5: OC2 } \\ & \text { 6: OC3 } \end{aligned}$	1	\bullet	224
F07.30	Type of the last but two fault	$\begin{aligned} & \text { 7: OV1 } \\ & \text { 8: OV2 } \end{aligned}$	1	\bullet	225
F07.31	Type of the last but three fault	$\begin{aligned} & \text { 9: OV3 } \\ & \text { 10: UV } \end{aligned}$	/	\bullet	226

Functio n code	Name	Description	Default value	Modify	NO.
F07.32	Type of the last but Five fault	11: Motor overload (OL1) 12: The VFD overload (OL2) 13: Input side phase loss (SPI) 14: Output side phase loss (SPO) 15: Overheat of the rectifier module (OH1) 16: Overheat fault of the inverter module (OH2) 17: External fault (EF) 18: 485 communication fault (CE) 19: Current detection fault (ItE) 20: Motor autotune fault (tE) 21: EEPROM operation fault (EEP) 22: PID response offline fault (PIDE) 23: Braking unit fault (bCE) 24: Running time arrival (END) 25: Electrical overload (OL3) 26: Keypad communication fault (PCE) 27: Parameter uploading fault (UPE) 28: Parameter downloading fault (DNE) 32: Grounding short circuit fault 1 (ETH1) 33: Grounding short circuit fault 2 (ETH2) 36: Undervoltage fault (LL)	1	\bullet	227
F07.33	Running freque	ncy at present fault	0.00 Hz	\bullet	228
F07.34	Ramp referenc	frequency at present fault	0.00 Hz	\bullet	229
F07.35	Output voltage	at the present fault	OV	-	230
F07.36	Output current	at present fault	0.0A	\bullet	231
F07.37	Bus voltage at p	present fault	0.0 V	\bullet	232
F07.38	The max. tempe	erature at present fault	$0.0{ }^{\circ} \mathrm{C}$	\bullet	233
F07.39	Input terminals	state at present fault	0	\bullet	234
F07.40	Output terminal	s state at present fault	0	\bullet	235
F07.41	Running freque	ncy at the last fault	0.00 Hz	\bullet	236
F07.42	Ramp reference	e frequency at the last fault	0.00 Hz	\bullet	237
F07.43	Output voltage	at the last fault	0V	\bullet	238
F07.44	The output curr	ent at the last fault	0.0A	\bullet	239
F07.45	Bus voltage at th	the last fault	0.0V	\bullet	240
F07.46	The max. tempe	erature at the last fault	$0.0{ }^{\circ} \mathrm{C}$	\bullet	241
F07.47	Input terminals	state at the last fault	0	\bullet	242
F07.48	Output terminals	s state at the last fault	0	-	243
F07.49	Running freque	ncy at the last but one fault	0.00 Hz	\bullet	244

| Function
 code | Name | Description | Default
 value | Modify |
| :--- | :--- | :---: | :---: | :---: | NO. | N |
| :--- |

F08 Group Enhanced function

Functio n code	Name	Description	Default value	Modify	NO.
F08.00	ACC time 2	Refer toF00.11 andF00.12for detailed definition. KOC560 series define four groups of ACC/DEC time which can be selected by F05 group. The first group of ACC/DEC time is the factory default one. Setting range: $0.0-3600.0 \mathrm{~s}$	Model depended	\bigcirc	252
F08.01	DEC time 2		Model depended	\bigcirc	253
F08.02	ACC time 3 DEC time 3		Model depended	\bigcirc	254
F08.03			Model depended	\bigcirc	255
F08.04	ACC time 4		Model depended	\bigcirc	256
F08.05	DEC time 4		Model depended	\bigcirc	257
F08.06	Jogging frequency	This parameter is used to define the reference frequency during jogging. Setting range: 0.00 Hz - F00.03 (the max. frequency)	5.00 Hz	\bigcirc	258
F08.07	$\begin{gathered} \text { Jogging ACC } \\ \text { time } \end{gathered}$	The jogging ACC time means the time needed if Model the VFD runs from OHz to the max. frequency.		\bigcirc	259
F08.08	Jogging DEC time	The jogging DEC time means the time needed if the VFD goes from the max. frequency (F00.03) to 0 Hz . Setting range: $0.0-3600.0 \mathrm{~s}$	Model depended	\bigcirc	260
F08.09	Jumping frequency 1	When the set frequency is in the range of jumping frequency, the VFD will run at the edge of the jumping frequency. The VFD can avoid the mechanical resonance point by setting the jumping frequency. The VFD	0.00 Hz	\bigcirc	261
F08.10	Jumping frequency range 1		0.00 Hz	\bigcirc	262

Function code	Name	Description	Default value	Modify	NO.
F08.11	Jumping frequency 2	can set three jumping frequency. But this function will be invalid if all jumping points are 0 . Setting range: 0.00 Hz - F 00.03 (the max. frequency)	0.00 Hz	\bigcirc	263
F08.12	Jumping frequency range 2		0.00 Hz	\bigcirc	264
F08.13	Jumping frequency 3		0.00 Hz	O	265
F08.14	Jumping frequency range 3		0.00 Hz	O	266
F08.15	Traverse range	This function applies to the industries where traverse and convolution function are required such as textile and chemical fiber. The traverse function means that the output frequency of the VFD is fluctuated with the set frequency as its center. The route of the running frequency is illustrated as below, of which the traverse is set byF08.15and whenF08.15is set as 0 , the traverse is 0 with no function. Traverse range: The traverse running is limited by upper and low frequency. The traverse range relative to the center frequency: traverse range AW = center frequency×traverse rangeF08.15. Sudden jumping frequency $=$ traverse range AW×sudden jumping frequency rangeF08.16. When run at the traverse frequency, the value which is relative to the sudden jumping frequency. The raising time of the traverse frequency: The time from the lowest point to the highest one.	0.0\%	\bigcirc	267
F08.16	Sudden jumping frequency range		0.0\%	\bigcirc	268
F08.17	Traverse boost time		5.0s	O	269
F08.18	Traverse declining time		5.0s	\bigcirc	270

Functio n code	Name	Description	Default value	Modify	NO.
		The declining time of the traverse frequency: The time from the highest point to the lowest one. Setting range ofF08.15: 0.0-100.0\% (relative to the set frequency) Setting range ofF08.16: 0.0-50.0\% (relative to the traverse range) Setting range of $F_{F} 08.17$: $0.1-3600.0$ s Setting range of $F 08.18: 0.1-3600.0$ s			
F08.25	Setting counting value	The counter counts the input pulse signals through the HDI.	0	\bigcirc	271
F08.26	Reference counting value	When the counter achieves a fixed number, the multi-function output terminals will output the	0	\bigcirc	272
		signal of "fixed counting number arrival" and the counter go on working; when the counter achieves a setting number, the multi-function output terminals will output the signal of "setting counting number arrival", the counter will clear all numbers and stop to recount before the next pulse. The setting counting valueF08.26should be no more than the setting counting valueF08.25. The function is illustrated as below: Setting range of $F_{F} 08.25:_{F} 08.26-65535$ Setting range ofF08.26: 0-F08.25			

Functio n code	Name	Description	Default value	Modify	NO.
F08.27	Set running time	Pre-set running time of the VFD. When the accumulative running time achieves the set time, the multi-function digital output terminals will output the signal of "running time arrival". Setting range: 0-65535 min	Om	\bigcirc	273
F08.28	Fault reset times	The time of the fault reset: set the fault reset time by selecting this function. If the reset time exceeds this set value, the VFD will stop for the fault and wait to be repaired. The interval time of the fault reset: The interval between the time when the fault occurs and the time when the reset action occurs. Setting range ofF08.28: 0-10 Setting range ofF08.29: 0.1-3600.0s	0	\bigcirc	274
F08.29	Interval time of automatic fault reset		1.0s	\bigcirc	275
F08.30	Frequency decreasing ratio of the dropping control	The output frequency of the VFD changes as the load. And it is mainly used to balance the power when several VFD drive one load. Setting range: $0.00-10.00 \mathrm{~Hz}$	0.00 Hz	\bigcirc	276
F08.32	FDT1 electrical level detection value	When the output frequency exceeds the corresponding frequency of FDT electrical level, the multi-function digital output terminals will output the signal of "frequency level detect FDT" until the output frequency decreases to a value	50.00 Hz	\bigcirc	277
F08.33	FDT1 retention detection value		5.0\%	\bigcirc	278

Functio n code	Name	Description	Default value	Modify	NO.
F08.34	FDT2 electrical level detection value	lower than (FDT electrical level-FDT retention detection value) the corresponding frequency, the signal is invalid. Below is the waveform diagram:	50.00 Hz	\bigcirc	279
F08.35	FDT2 retention detection value	 Setting range ofF08.32: $0.00 \mathrm{~Hz}-\mathrm{P} 00.03$ (the max. frequency) Setting range ofF08.33: 0-100.0\% (FDT1 electrical level) Setting range ofF08.34: 0.00 Hz - P00.03 (the max. frequency) Setting range ofF08.35: 0.0-100.0\% (FDT2 electrical level)	5.0\%	\bigcirc	280
F08.36	Amplitude value for frequency arrival detection	When the output frequency is among the below or above range of the set frequency, the multi-function digital output terminal will output the signal of "frequency arrival", see the diagram below for detailed information: The setting range: $0.00 \mathrm{~Hz}-F^{00.03}$ (the max. frequency)	0.00 Hz	\bigcirc	281
F08.37	Energy braking enable	This parameter is used to control the internal braking unit. 0: Disable 1: Enable Note: Only applicable to the models with internal braking units.	0	\bigcirc	282

Functio n code	Name	Description	Default value	Modify	NO.
F08.42	Keypad data control	$0 \times 000-0 \times 1223$ LED ones: frequency enable selection 0 : Both \wedge / \vee keys and digital potentiometer adjustments are valid 1: Only \wedge / \vee keys adjustment is valid 2: Only digital potentiometer adjustments is valid 3: Neither \wedge / \checkmark keys nor digital potentiometer adjustments are valid LED tens: frequency control selection 0 : Only valid whenF00.06=0 orF00.07=0 1: Valid for all frequency setting manner 2: Invalid for multi-step speed when multistep speed has the priority LED hundreds: action selection during stopping 0 : Setting is valid 1: Valid during running, cleared after stopping 2: Valid during running, cleared after receiving the stop command LED thousands: \wedge / \vee keys and digital potentiometer integral function 0 : The integral function is valid 1: The integral function is invalid	0x0000	\bigcirc	287
F08.43	Integral ratio of the keypad potentiometer	0.01-10.00s	0.10s	\bigcirc	288
F08.44	UP/DOWN terminals control	$0 \times 00-0 \times 221$ LED ones: frequency control selection 0 : UP/DOWN terminals setting valid 1: UP/DOWN terminals setting valid LED tens: frequency control selection 0 : Only valid whenF00.06=0 orF00.07=0 1: All frequency means are valid 2: When the multi-step are priority, it is invalid to the multi-step LED hundreds: action selection when stop 0 : Setting valid 1: Valid in the running, clear after stop 2: Valid in the running, clear after receiving the stop commands	0x000	\bigcirc	289

Functio n code	Name	Description	Default value	Modify	NO.
F08.45	UP terminals frequency incremental change rate	0.01-50.00Hz/s	$\begin{aligned} & 0.50 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$	\bigcirc	290
F08.46	DOWN terminals frequency incremental change rate	0.01-50.00 Hz/s	$\begin{aligned} & 0.50 \\ & \mathrm{~Hz} / \mathrm{s} \end{aligned}$	\bigcirc	291
F08.47	Action when the frequency setting is off	$0 \times 000-0 \times 111$ LED ones: Action selection when power off. 0 : Save when power off 1: Clear when power off LED tens: Action selection when MODBUS set frequency off 0 : Save when power off 1: Clear when power off LED hundreds: The action selection when other frequency set frequency off 0 : Save when power off 1: Clear when power off	0x000	\bigcirc	292
F08.48	High bit of initia power consumption	This parameter is used to set the original value of the power consumption. The original value of the power consumption	0	\bigcirc	293
F08.49	Low bit of initial power consumption	$=F 08.48^{*} 1000+F^{08.49(k W h)}$ Setting range ofF08.48: 0-59999 Setting range ofF08.49: 0.0-999.9	0.0	\bigcirc	294
F08.50	Magnetic flux braking	This function code is used to enable magnetic flux. 0 : Invalid. 100-150: The bigger the coefficient, the stronger the braking is. This VFD is used to increase the magnetic flux to decelerate the motor. The energy generated by the motor during braking can be converted into heat energy by increasing the magnetic flux. The VFD monitors the state of the motor continuously even during the magnetic flux period. So the magnetic flux can be used in the motor	0	\bullet	295

Functio \mathbf{n} code	Name	Description	Default value	Modify	NO.
		stop, as well as to change the rotation speed of the motor. Its other advantages are: Brake immediately after the stop command. It does not need to wait the magnetic flux weaken. Better cooling for motors. The current of the stator other than the rotor increases during magnetic flux braking, while the cooling of the stator is more effective than the rotor.	N		

F09 Group PID control

Function code	Name	Description	Default value	Modify	NO.

F09.00	PID reference source	When the frequency command selection (F00.06, F00.07) is 7 or the voltage setting channel selection (F04.27) is 6, the running mode of the VFD is procedure PID controlled. The parameter determines the target reference channel during the PID procures. 0: Set byF09. 01 1: Analog channel Al1 reference (implemented through the analog potentiometer on the keypad for the 15KW and lower models; not available for the 18.5 KW and higher models.) 2 : Analog channel Al2 reference 3: Analog channel Al3 set 4: High speed pulse HDI set 5: Multi-step speed set 6: MODBUS communication set The setting target of procedure PID is a relative one, 100% of the setting equals to 100% of the response of the controlled system. The system is calculated according to the relative value ($0-100.0 \%$). Note: Multi-step speed reference, it is realized by setting F10 group parameters.	0	\bigcirc	297

Functio n code	Name	Description	Default value	Modify	NO.
F09.01	PID value reference	WhenF09.00 $=0$, set the parameter whose basic value is the feedback value of the system. The setting range: - $100.0 \%-100.0 \%$	0.0\%	\bigcirc	298
F09.02	PID feedback source	Select the PID channel by the parameter. 0: Analog channel Al1 feedback (implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models.) 1: Analog channel Al2 feedback 2: Analog channel Al3 feedback 3: High speed HDI feedback 4: MODBUS communication feedback Note: The reference channel and the feedback channel cannot coincide, otherwise, PID cannot control effectively.	0	\bigcirc	299
F09.03	PID output feature	0 : PID output is positive: When the feedback signal exceeds the PID reference value, the output frequency of the VFD will decrease to balance the PID. For example, the strain PID control during wrap-up 1: PID output is negative: When the feedback signal is stronger than the PID reference value, the output frequency of the VFD will increase to balance the PID. For example, the strain PID control during wrap-down	0	\bigcirc	300
F09.04	Proportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID adjuster. The parameter of 100 means that when the offset of PID feedback and reference value is 100%, the adjusting range of PID adjustor is the max. frequency (ignoring integral function and differential function). The setting range: $0.00-100.00$	1.00	\bigcirc	301
F09.05	Integral time (Ti)	This parameter determines the speed of PID adjustor to carry out integral adjustment on the deviation of PID feedback and reference. When the deviation of PID feedback and reference is 100%, the integral adjustor works	0.00s	\bigcirc	302

Functio n code	Name	Description	Default value	Modify	NO.
		continuously after the time (ignoring the proportional effect and differential effect) to achieve the max. frequency (F00.03) or the max. voltage (F04.31). Shorter the integral time, stronger is the adjustment Setting range: $0.00-10.00 \mathrm{~s}$			
F09.06	Differential time (Td)	This parameter determines the strength of the change ratio when PID adjustor carries out integral adjustment on the deviation of PID feedback and reference. If the PID feedback changes 100% during the time, the adjustment of integral adjustor (ignoring the proportional effect and differential effect) is the max. frequency (F00.03) or the max. voltage (F04.31). Longer the integral time, stronger is the adjusting. Setting range: $0.00-10.00 \mathrm{~s}$	0.00s	\bigcirc	303
F09.07	Sampling cycle (T)	This parameter means the sampling cycle of the feedback. The modulator calculates in each sampling cycle. The longer the sapling cycle is, the slower the response is. Setting range: 0.000-10.000s	0.100s	\bigcirc	304
F09.08	PID control deviation limit	The output of PID system is relative to the maximum deviation of the close loop reference. As shown in the diagram below, PID adjustor stops to work during the deviation limit. Set the function properly to adjust the accuracy and stability of the system.	0.0\%	\bigcirc	305

F09.09	Output upper limit of PID	These parameters are used to set the upper and lower limit of the PID adjustor output.	100.0%	\bigcirc	306

Functio n code	Name	Description	Default value	Modify	NO.
F09.10	Output lower limit of PID	100.0% corresponds to max. frequency or the max. voltage of (F04.31) Setting range ofF09.09:F09.10-100.0\% Setting range ofF09.10: -100.0\%-F09.09	0.0\%	\bigcirc	307
F09.11	\qquad	Set the PID feedback offline detection value, when the detection value is smaller than or equal to the feedback offline detection value, and the lasting	0.0\%	\bigcirc	308
F09.12	\square	time exceeds the set value inF09.12, the VFD will report "PID feedback offline fault" and the keypad will display PIDE. Setting range of $F_{F} 09.11: 0.0-100.0 \%$ Setting range ofF09.12: 0.0-3600.0s	1.0s	\bigcirc	309
F09.13	PID adjustment	0x0000-0x1111 LED ones: 0 : Keep on integral adjustment when the frequency achieves the upper and low limit; the integration shows the change between the reference and the feedback unless it reaches the internal integral limit. When the trend between the reference and the feedback changes, it needs more time to offset the impact of continuous working and the integration will change with the trend. 1: Stop integral adjustment when the frequency achieves the upper and low limit. If the integration keeps stable, and the trend between the reference and the feedback changes, the integration will change with the trend quickly. LED tens: P00.08 is 0 0 : The same with the setting direction; if the output of PID adjustment is different from the current	0x0001	\bigcirc	310

Functio n code	Name	Description	Default value	Modify	NO.
		running direction, the internal will output 0 forcedly. 1: Opposite to the setting direction LED hundreds: P 00.08 is 0 0 : Limit to the maximum frequency 1: Limit to frequency A LED thousands: 0 : $A+B$ frequency, the buffer of A frequency is invalid 1: A+B frequency, the buffer of A frequency is valid			
F09.14	Proportional gain at low frequency (Kp)	0.00-100.00	1.00	\bigcirc	311
F09.15	PID command of ACC/DEC time	0.0-1000.0s	0.0s	\bigcirc	312
F09.16	PID output filter time	0.000-10.000s	0.000s	\bigcirc	313

F10 Group Simple PLC and multi-step speed control

Functio \boldsymbol{n} code	Name	Description	Default value	Modify	NO.
F10.00	Simple PLC	0: Stop after running once. The VFD has to be commanded again after finishing a cycle. 1: Run at the final value after running once. After finish a signal, the VFD will keep the running frequency and direction of the last run. 2: Cycle running. The VFD will keep on running until receiving a stop command and then, the system will stop.	0	0	314
F10.01	Simple PLC memory	0: Power loss without memory 1: Power loss memory; PLC record the running step and frequency when power loss.	0	0	315

F10.02	Multi- step speed 0	100.0\% of the frequency setting corresponds to the max. frequency F00.03.	0.0%	0	316

Function code	Name	Description										Default value	Modify	NO.
F10.23	Running time of step 10	The start and stopping of multi-step running is determined by function codeF00.06, the relationship between S1,S2,S3,S4 and multi-step speed is as following:										0.0s	\bigcirc	337
F10.24	Multi-step speed 11											0.0\%	\bigcirc	338
F10.25	Running time of step 11											0.0s	\bigcirc	339
F10.26	Multi-step speed 12											0.0\%	\bigcirc	340
		S1		OFF ON	ON O	OFF	ON	OFF	ON	OFF	ON			
F10.27	Running time of step 12											0.0s	\bigcirc	341
		S2	OF	OFF OF	OFF O	ON	ON	OFF	OFF	ON	ON			
		S3		OFF OF	OFF O	OFF	OfF	ON	ON	ON	ON			
F10.28	Multi-step speed 13											0.0\%	\bigcirc	342
F10.29	Running time of step 13	S4		OFF OF	OFF O	OFF	OFF	OFF	OFF	OFF	OFF	0.0s	\bigcirc	343
		Step		01	12	2	3	4	5	6	7			
		S1		OFF ON	ON O	OFF	ON	OFF	ON	OFF	ON			
		S2		OFF OF	OFF O	ON	ON	OFF	OFF	ON	ON			
F10.30	Multi-step speed 14	S3		OFF OF	OFF O	OFF	OFF	ON	ON	ON	ON	0.0\%	\bigcirc	344
		S4		ON ON	ON O	ON	ON	ON	ON	ON	ON			
F10.31	Running time of step 14	Step		89	910	10	11	12	13	14	15	0.0s	\bigcirc	345
F10.32	Multi-step speed 15	Setting range of $F 10 .(2 n, 1<n<17)$: $-100.0-100.0 \%$ Setting range of $\mathrm{F} 10 .(2 n+1,1<n<17)$:$0.0-6553.5 \mathrm{~s}(\mathrm{~min})$										0.0\%	\bigcirc	346
F10.33	Running time of step 15											0.0s	\bigcirc	347
F10.34	Simple PLC 0-7 step ACC/DEC time	Below is the detailed instruction:										0x0000	\bigcirc	348
		$\begin{gathered} \text { Function } \\ \text { code } \end{gathered}$		ary bit	Step		$\begin{gathered} \mathrm{CDEC} A \\ 0 \end{gathered}$	$A C C D E C$			$\begin{gathered} \mathrm{CCDEC} \\ 3 \end{gathered}$			
F10.35		F10.34	BIT1	BITO	0		00	01	10		11	0x0000	\bigcirc	
	Simple PLC 8-15 step		B173	B1T2	2		00	01	10		11			349
			BiT5	BIT4	4		00	01	10		11			
			BiTt	BIT6	帾		00	01	10		11			
			B1T9	B1T8	8		00	01	10		11			
			BIT1]	[$0^{1 / 10}$	0		00	01	10		11			
			BIT13	3 BIT12	2		00	01	10		11			
			BITT1	$5{ }^{\text {B1T14 }}$	4		00	01	10		11			
			BIT1	В1T0	0		00	01	10		11			

F11 Group Protective parameters

Function code	Name	Description	Default value	Modify	NO.
F11.04	Protection voltage at overvoltage stall	120-150\%(standard bus voltage) (380V)	136\%	\bigcirc	356
		120-150\%(standard bus voltage) (220V)	120\%		
F11.05	Current limit action selection	The actual increasing ratio is less than the ratio of output frequency because of the big load during	01	\bigcirc	357
F11.06	Automatic current limit	ACC running. It is necessary to take measures to avoid overcurrent fault and the VFD trips.	G type: 160.0\%	\bigcirc	358
		During the running of the VFD, this function will detect the output current and compare it with the	P type: 120.0\%		
F11.07	The decreasing ratio during current limit	VFD will run at stable frequency in ACC running, or the VFD will derate to run during the constant running. If it exceeds the level continuously, the output frequency will keep on decreasing to the lower limit. If the output current is detected to be lower than the limit level, the VFD will accelerate to run.	$\begin{gathered} 10.00 \\ \mathrm{~Hz} / \mathrm{s} \end{gathered}$	\bigcirc	359

Functio n code	Name	Description	Defaul t value	Modify	NO.
		 Setting range ofF11.05: 0x00-0x11 LED ones: current limit 0 : Invalid 1: Always valid LED tens: overload alarm 0 : Valid 1: Invalid Setting range ofF11.06: 50.0-200.0\% (corresponding to the rated output current of the VFD) Setting range ofF11.07: $0.00-50.00 \mathrm{~Hz} / \mathrm{s}$			
F11.08	Overload pre-alarm of the motor/VFD	The output current of the VFD or the motor is above F11.09 and the lasting time is beyond F11.10, overload pre-alarm will be	0x000	\bigcirc	360
F11.09	$\begin{gathered} \text { Overload } \\ \text { pre-alarm test } \\ \text { level } \end{gathered}$	output.	G type: 150\% P type: 120\%	\bigcirc	361

F11.10	Overload pre-alarm detection time	 Setting range of F11.08: 0X000~0X131 Enable and define the overload pre-alarm of the VFD or the motor. LED ones: 0 : Overload pre-alarm of the motor, comply with the rated current of the motor 1: Overload pre-alarm of the VFD, comply with the rated output current of the VFD	0x0000	\bigcirc	362

Function code	Name	Description	Default value	Modify	NO.
		2: VFD output torque overload/underload pre-alarm, corresponding to the rated motor torque LED tens: 0 : The VFD continues to work after underload pre-alarm 1: The VFD continues to work after underload pre-alarm and the VFD stops running after overload fault 2: The VFD continues to work after overload pre-alarm and the VFD stops running after underload fault 3. The VFD stops when overload or underload. LED hundreds : 0 : Detection all the time 1: Detection in constant running LED thousands: Overload integral selection 0 : Overload integral is invalid 1: Overload integral is valid Setting range of F11.09: F11. 11-200\% Setting range of P11. 10: 0.1-3600.0s			
F11.11	Detection level of underload pre-alarm	If the VFD current or the output current is lower thanF11.11, and its lasting time is beyond F11.12, the VFD will output underload pre-alarm.	50\%	\bigcirc	363
F11.12	Detection time of underload pre-alarm	Setting range ofF11.11: 0-F11.09(relative value determined by the ones place of F11.08) Setting range of F 11.12 : $0.1-3600.0 \mathrm{~s}$	1.0s	\bigcirc	364
F11.13	Output terminal action during fault	Select the action of fault output terminals on undervoltage and fault reset. $0 \times 00-0 \times 11$ LED ones: 0 : Action under fault undervoltage 1: No action under fault undervoltage LED tens: 0 : Action during the automatic reset 1: No action during the automatic reset	0×00	\bigcirc	365

Functio \mathbf{n} code	Name	Description	Default value	Modify	NO.
F11.16	Extension functions selection	0x00-0x11 LED ones: Voltage drop frequency-decreasing selection 0: Voltage drop frequency-decreasing selection disable $1:$ Voltage drop frequency-decreasing selection enable LED tens: Step 2 ACC/DEC time option 0: Step 2 ACC/DEC time option disable $1:$ Step 2 ACC/DEC time option enable, when running frequency more thanF08.36, ACC/DEC time switch to step 2 ACC/DEC time	00	O	366

F13 Group Enhanced function parameters

Functio n code	Name	Description	Default value	Modify	NO.
F13.13	Braking current of short-circuit	WhenF01.00=0 during the starting of the VFD, set F13.14to a non-zero value to enter the short circuit braking. When the running frequency is lower thanF01.09 during the stopping of the VFD, setF13.15to a non-zero value to enter into stopping short circuited braking and then carry out the DC braking at the time set byF01.12(refer to the instruction ofF01.09-F01.12). Setting range ofF13.13: 0.0-150.0\% (of the rated output current of the VFD) Setting range of $\mathrm{F} 13.14: 0.00-50.00$ s Setting range of F 13.15 : $0.00-50.00 \mathrm{~s}$	0.0\%	\bigcirc	367
F13.14	Braking retention time before starting		0.00s	\bigcirc	368
F13.15	Braking retention time when stopping		0.00s	\bigcirc	369

F14 Group Serial communication

Functio \mathbf{n} code	Name	Description	Default value	Modify	NO.
F14.00	Local communication address	The setting range: 1-247 When the master is writing the frame, the communication address of the slave is set to 0; the broadcast address is the communication address.	1	0	370

Functio n code	Name	Description	Default value	Modify	NO.
		All slaves on the MODBUS fieldbus can receive the frame, but the salve doesn't answer. The communication address of the drive is unique in the communication net. This is the fundamental for the point to point communication between the upper monitor and the drive. Note: The address of the slave cannot set to 0 .			
F14.01	Communication baud ratio	Set the digital transmission speed between the upper monitor and the VFD. 0: 1200BPS 1:2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS Note: The baud rate between the upper monitor and the VFD must be the same. Otherwise, the communication is not applied. The bigger the baud rate, the quicker the communication speed.	4	\bigcirc	371
F14.02	Digital bit checkout	The data format between the upper monitor and the VFD must be the same. Otherwise, the communication is not applied. 0 : No check ($\mathrm{N}, 8,1$) for RTU 1: Even check $(E, 8,1)$ for RTU 2: Odd check $(0,8,1)$ for RTU 3: No check ($\mathrm{N}, 8,2$) for RTU 4: Even check $(E, 8,2)$ for RTU 5: Odd check $(0,8,2)$ for RTU 6: No check ($\mathrm{N}, 7,1$) for ASCII 7: Even check ($\mathrm{E}, 7,1$) for ASCII 8: Odd check $(0,7,1)$ for ASCII 9: No check ($\mathrm{N}, 7,2$) for ASCII 10: Even check ($\mathrm{E}, 7,2$) for ASCII 11: Odd check $(0,7,2)$ for ASCII 12: No check ($\mathrm{N}, 8,1$) for ASCII 13: Even check $(E, 8,1)$ for ASCII 14: Odd check $(0,8,1)$ for ASCII	1	\bigcirc	372

Functio n code	Name	Description	Default value	Modify	NO.
		15: No check $(N, 8,2)$ for ASCII 16: Even check $(E, 8,2)$ for ASCII 17: Odd check $(0,8,2)$ for ASCII			
F14.03	Response delay	$0-200 \mathrm{~ms}$ It means the interval time between the interval time when the drive receive the data and sent it to the upper monitor. If the answer delay is shorter than the system processing time, then the answer delay time is the system processing time, if the answer delay is longer than the system processing time, then after the system deal with the data, waits until achieving the answer delay time to send the data to the upper monitor.	5	\bigcirc	373
F14.04	Fault time of communication overtime	0.0 (invalid), $0.1-60.0 \mathrm{~s}$ When the function code is set as 0.0 , the communication overtime parameter is invalid. When the function code is set as non-zero, if the interval time between two communications exceeds the communication overtime, the system will report "485 communication faults" (CE). Generally, set it as invalid; set the parameter in the continuous communication to monitor the communication state.	0.0s	\bigcirc	374
F14.05	Transmission fault processing	0 : Alarm and stop freely 1: No alarm and continue to run 2: No alarm and stop according to the stop means (only under the communication control) 3: No alarm and stop according to the stop means (under all control modes)	0	\bigcirc	375
F14.06	Communication processing	LED ones place: 0 : Operation with response: the drive will respond to all reading and writing commands of the upper monitor. 1: Operation without response; The drive only responds to the reading command other than the writing command of the drive. The communication efficiency can be increased by this method. LED tens place: 0 : Communication encrypting invalid	0x00	\bigcirc	376

Functio n code	Name	Description	Default value	Modify	NO.
		1: Communication encrypting valid			

F17 Group Monitoring function

Functio \mathbf{n} code	Name	Description	Default value	Modify	NO.
F17.00	Setting frequency	Display current set frequency of the VFD Range: $0.00 \mathrm{~Hz}-$ F00.03	$/$	\bullet	377
F17.01	Output frequency	Display current output frequency of the VFD Range: $0.00 \mathrm{~Hz}-$ F00.03	$/$	\bullet	378
F17.02	Ramp reference frequency	Display current ramp reference frequency of the VFD Range: $0.00 \mathrm{~Hz}-$ F00.03	$/$	\bullet	379
F17.03	Output voltage	Display current output voltage of the VFD Range: 0-1200V	$/$	\bullet	380
F17.04	Output current	Display current output current of the VFD Range: $0.0-3000.0 \mathrm{~A}$	$/$	\bullet	381
F17.05	Motor speed	Display the rotation speed of the motor. Range: 0-65535RPM	$/$	\bullet	382
F17.08	Motor power	Display current motor power Range: -300-300\%	$/$	\bullet	383
F17.09	Output torque	Display the current output torque of the VFD. Range: -250.0-250.0\%	$/$	\bullet	384

Functio n code	Name	Description					Default value	Modify	NO.
F17.10	Evaluated motor frequency	Evaluated frequency of motor rotor Range: $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$					1	\bullet	385
F17.11	DC bus voltage	Display current DC bus voltage of the VFD Range: $0.0-2000.0 \mathrm{~V}$					1	\bullet	386
F17.12	ON-OFF input terminals state	Display current Switch input terminals state of the VFD Range: 0000-00FF					1	\bullet	387
			BIT8	BIT7	BIT6	BIT5			
			HDI	S8	S7	S6			
		BIT4	BIT3	BIT2	BIT1	BIT0			
		S5	S4	S3	S2	S1			
F17.13	ON-OFF output terminals state	Display current Switch output terminals state of the VFD					1	\bullet	388
		BIT3	BI			BIT0			
		RO2	RO1		O	Y			
		Range: 0000-000F							
F17.14	Digital adjustmen t	Display the adjustment through the keypad of the VFD. Range : $0.00 \mathrm{~Hz}-\mathrm{F} 00.03$					1	\bullet	389
F17.15	Torque reference	Display the torque given, the percentage to the current rated torque of the motor. Setting range: -300.0\%-300.0\% (motor rated current)					1	\bullet	390
F17.16	Linear speed	Display the current linear speed of the VFD. Range: 0-65535					1	-	391
F17.18	Counting value	Display the current counting number of the VFD. Range: 0-65535					1	\bullet	392
F17.19	Al1 input voltage	It is implemented through the analog potentiometer on the keypad for the 15 KW and lower models; not available for the 18.5 KW and higher models. Display analog Al1 input signal Range: 0.00-10.00V					1	\bullet	393
F17.20	AI2 input voltage	Display analog AI2 input signal Range: $0.00-10.00 \mathrm{~V}$					1	\bullet	394

Functio n code	Name	Description	Default value	Modify	NO.
F17.21	AI3 input voltage	Display analog AI2 input signal Range: - $10.00-10.00 \mathrm{~V}$	1	\bullet	395
F17.22	HDI input frequency	Display HDI input frequency Range: $0.000-50.000 \mathrm{kHz}$	1	\bullet	396
F17.23	PID reference value	Display PID reference value Range: -100.0-100.0\%	1	\bullet	397
F17.24	PID feedback value	Display PID response value Range: -100.0-100.0\%	1	\bullet	398
F17.25	Power factor of the motor	Display the current power factor of the motor. Range: -1.00-1.00	1	\bullet	399
F17.26	Current running time	Display the current running time of the VFD. Range: 0-65535min	1	\bullet	400
F17.27	Simple PLC and the current step of multi-step speed	Display simple PLC and the current step of the multi-step speed Range: 0-15	1	\bullet	401
F17.35	AC input current	Display the input current in AC side. Range: 0.0-5000.0A	1	\bullet	402
F17.36	Output torque	Display the output torque. Positive value is in the electromotion state, and negative is in the power generating state. Range: $-3000.0 \mathrm{Nm}-3000.0 \mathrm{Nm}$	1	\bullet	403
F17.37	Counting of the motor overload	$0-100$ (100 is OL1 fault)	1	\bullet	404
F17.38	PID output	-100.00-100.00\%	0.00\%	-	405
F17.39	Wrong download of parameters	0.00-99.99	0.00	\bullet	406

F24 Group Water supply

Function code	Name	Description	Default value	Modify	NO.
F24.00	Water supply selection	0: Disabled 1: Enabled	0	0	407
F24.01	Press feedback source	0: Al1 setting value (implemented through the analog potentiometer on the keypad for the 15KW and lower models; not available for	0	0	408

Function code	Name	Description	Default value	Modify	NO.
		the 18.5 KW and higher models.) 1: Al2 setting value 2: Al3 setting value 3: HDI setting value			
F24.02	Hibernation check	0 : Hibernate as the setting frequency < F 24.03 1: Hibernate as the feedback pressure >F24.04	0	\bigcirc	409
F24.03	Starting frequency of the hibernation	0.00-F00.03(the max. frequency)	10.00 Hz	\bigcirc	410
F24.04	Starting pressure of hibernation	0.00-100.0\%	50.0\%	\bigcirc	411
F24.05	Hibernation delay time	0.0-3600.0s	5.0s	\bigcirc	412
F24.06	Hibernation awake	0 : Awake as the setting frequency >F24.07 1: Awake as the feedback pressure \langle F24.08	0	\bigcirc	413
F24.07	Awake frequency	0.00-F00.03(the max. frequency)	$\begin{gathered} 20.00 \\ \mathrm{~Hz} \end{gathered}$	\bigcirc	414
F24.08	Setting value of hibernation awake	0.00-100.0\%	10.0\%	\bigcirc	415
F24.09	Min. hibernation time	0.0-3600.0s	5.0s	\bigcirc	416
F24.10	Valid auxiliary motor	F24.10-F24.12can make three motors to form a simple system of water supply.	0	\bigcirc	417
F24. 11	Start/stop delay time of auxiliary motor 1		5.0s	\bigcirc	418
F24.12	Start/stop delay time of auxiliary motor 2		5.0s	\bigcirc	419

Function code	Name	Description	Default value	Modify
		F24.10is used to select the valid auxiliary motor. 0: No auxiliary motor 1: Auxiliary motor 1 valid 2: Auxiliary motor 2 valid 3: Auxiliary motor 1 and 2 valid Setting range of $24.11: 0.0-3600.0$ s Setting range ofF24.12: $0.0-3600.0 \mathrm{~s}$		

7 Basic operation instruction

7.1 What this chapter contains

This chapter describes the internal function mode of the VFD in details.

- Check all terminals are connected properly and tightly.
- Check that the power of the motor corresponds to that of the VFD.

7.2 First powering on

Check before powering on

Please check according to the installation list in chapter two.

Original powering operation

Check to ensure there is no mistake in wiring and power supply, switch on the air switch of the AC power supply on the input side of the VFD to power on the VFD. 8.8.8.8.8. will be displayed on the keypad, and the contactor closes normally. When the character on the nixie tubs changes to the set frequency, the VFD has finished the initialization and it is in the stand-by state.

LED displays "8.8.8.8.8"
Standby state and 7 LEDs are on

Below diagram shows the first operation: (take motor 1 as the example)

Note: If fault occurs, please do as the "Fault Tracking". Estimate the fault reason and settle the issue.

Besides F00.01 and F00.02, terminal command setting can also be used to set the running command channel.

| Current running | $\begin{array}{c}\text { Multi-function } \\ \text { command } \\ \text { channel } \\ \text { F00.01 }\end{array}$ | $\begin{array}{c}\text { Shifting the } \\ \text { command to keypad }\end{array}$ | $\begin{array}{c}\text { Multi-function } \\ \text { terminal 37 } \\ \text { Shifting the } \\ \text { command to } \\ \text { communication }\end{array}$ |
| :---: | :--- | :--- | :--- | \(\left.\begin{array}{c}Multi-function terminal

38

Shifting the command

to communication\end{array}\right]\)

Note: "/" means the multi-function terminal is invalid on the current reference channel.

7.3 Vector control

Because asynchronous motors have the characteristics of high stage, nonlinear, strong coupling and various variables, the actual control of the asynchronous motor is very difficult. Vector control is mainly used to settle this problem with the theme of that divide the stator current vector into exciting current (the current heft generating internal magnetic field of the motor) and torque current (the current heft generating torque) by controlling and measuring the stator current vector according to the principles of beamed magnetic field to control the range and phase of these two hefts. This method can realize the decoupling of exciting current and torque current to adjust the high performance of asynchronous motors.

KOC560 series VFD are embedded speed sensor-less vector control calculation. Because the core calculation of vector control is based on exact motor parameter models, the accuracy of motor parameter will impact on the performance of vector control. It is recommended to input the motor parameters and carry out autotune before vector running.

Because the vector control calculation is very complicated, high technical theory is needed for the user during internal autotune. It is recommended to use the specific function parameters in vector control with cautions.

7.4 Torque control

KOC560 series VFD support two kinds of control mode: torque control and rotation speed control. The core of rotation speed is that the whole control focuses on the stable speed and ensures the setting speed is the same as the actual running speed. The max. load should be in the range of the torque limit. The core of torque control is that the whole control focus on the stable torque and ensures the setting torque is the same as the actual output torque. At the same time, the output frequency is among the upper limit or the lower limit.

7.5 Parameters of the motor

| - Physical accident may occur if the motor starts up suddenly during autotune. |
| :--- | :--- |
| Please check the safety of surrounding environment of the motor and the load |
| before autotune. |
| The power is still applied even the motor stops running during static autotune. |
| Please do not touch the motor until the autotune is completed, otherwise there |
| would be electric shock. | | - Do not carry out the rotation autotune if the motor is coupled with the load, please |
| :--- |
| do not operate on the rotation autotune. Otherwise misacts or damage may occur |
| to the VFD or the mechanical devices. When carry out autotune on the motor |
| which is coupled with load, the motor parameter won't be counted correctly and |
| misacts may occur. It is proper to de-couple the motor from the load during |
| autotune when necessary. |

The control performance of the VFD is based on the established accurate motor model. The user has to carry out the motor autotune before first running (take motor 1 as the example).

Note:

1. Set the motor parameters according to the nameplate of the motor.
2. During the motor autotune, de-couple the motor form the load if rotation autotune is selected to make the motor is in a static and empty state, otherwise the result of autotune is incorrect. The asynchronous motors can autotune the parameters of F02.06- F02. 10.
3. During the motor autotune 1, do not to de-couple the motor form the load if static autotune is selected. Because only some parameters of the motor are involved, the control performance is not as better as the rotation autotune. The asynchronous motors can autotune the parameters of F02.06-F02. 10.
4. During the motor autotune 2, do not to de-couple the motor form the load if static autotune is selected. Because only some parameters of the motor are involved, the control performance is not as better as the rotation autotune. The asynchronous motors can autotune the parameters of F02.06 - F02.08. It is suitable in the cases which SVPWM control is applied.

7.6 Start and stop control

The start and stop control of the VFD includes three states: start after the running command during normal powering on, start after the restarting function becomes valid during normal powering on and start after the automatic fault reset. Below is the detailed instruction for three starting.

There are three starting modes for the VFD: start from the starting frequency directly, start after the DC braking and start after the rotation speed tracking. The user can select according to different situations to meet their needs.

For the load with big inertia, especially in the cases where the reverse rotation may occur, it is better to select starting after DC braking and then starting after rotation speed tracking.

1. The starting logic figure of starting after the running command during the normal powering on:

2. The starting logic figure of starting after the restarting function becomes valid during the normal powering on:

3. The starting logic figure of starting after the automatic fault reset:

7.7 Frequency setting

KOC560 series VFD can set the frequency by various means. The reference channel can be divided into main reference channel and assistant reference channel.

There are two main reference channels: A frequency reference channel and B frequency reference channel. These two reference channels can carry out mutual simple math calculation between each other. And the reference channels can be shifted dynamically through set multi- function terminals.

There are three assistant reference channels: keypad UP/DOWN input, terminals UP/DOWN switch input and digital potentiometer input. The three ways equal to the effect of input UP/DOWN reference in internal assistant reference of the VFD. The user can enable the reference method and the effect of the method to the frequency reference by setting function codes.

The actual reference of the VFD is consisted of main reference channel and assistant reference channel.

KOC560 series VFD support the shifting between different reference channels and the detailed shifting rules is as below:

Current reference channel F00.09	Multi-function terminal function 13 Shifting from A channel to B channel	Multi-function terminal function 14 Shifting from combination setting to A channel	Multi-function terminal function 15 Shifting from combination setting to B channel
A	B	$/$	$/$
B	A	$/$	$/$
A+B	$/$	A	B
A-B	$/$	A	B
$\operatorname{Max}(\mathrm{A}, \mathrm{B})$	$/$	A	B
$\operatorname{Min}(\mathrm{A}, \mathrm{B})$	$/$	A	B

Note: "/" means the multi-function terminal is invalid under the current reference channel.
When multi-function terminals UP (10) and DOWN (11) are used to set the internal assistant frequency, F08.45 and F08.46 can be set to increase or decrease the set frequency quickly.

7.8 Simple PLC

Simple PLC function is also a multi-step speed generator. The VFD can change the running frequency, direction to meet the need of processing according to the running time automatically. In the past, this function needs to be assisted by external PLC, but now the VFD can realize this function by itself.

The series VFD can control 16 -step speed with 4 groups of ACC/DEC time.
The multi-function digital output terminals or multi-function relay output an ON signal when the set PLC finishes a circle (or a step).

7.9 Multi-step speed running

Set the parameters when the VFD carries out multi-step speed running. KOC560 series VFD can set 16 step speed which can be selected by the combination code of multi-step speed terminals 1 4. They correspond to multi-step speed 0 to 15 .

7.10 PID control

PID control is commonly used to control the procedure. Adjust the output frequency by proportional, integral, differential operation with the dispersion of the target signals to stabilize the value on the target. It is possible to apply to the flow, pressure and temperature control. Figure of basic control is as below:

When F00.06, F00. $07=7$ or $\mathrm{F} 04.27=6$, the running mode of the VFD is procedure PID control.

7.10.1 General steps of PID parameters setting:

a Ensure the gain F

When ensure the gain F , firstly cancel the PID integration and derivation (set $\mathrm{Ti}=0$ and $\mathrm{Td}=0$, see the PID parameter setting for detailed information) to make proportional adjustment is the only method to PID. Set the input as $60 \%-70 \%$ of the permitted max. value and increase gain F from 0 until the system vibration occurs, vice versa, and record the PID value and set it to $60 \%-70 \%$ of the current value. Then the gain F commission is finished.

b Ensure the integration time

After ensuring the gain F, set an original value of a bigger integration time and decrease it until the system vibration occurs, vice versa, until the system vibration disappear. Record the Ti and set the integration time to $150 \%-180 \%$ of the current value. Then integration time commission is finished.

c Ensure the derivation time

Generally, it is not necessary to set Td which is 0 .
If it needs to be set, set it to 30% of the value without vibration via the same method with F and Ti .
d Commission the system with and without load and then adjust the PID parameter until it is available.

7.10.2 PID inching

After setting the PID control parameters, inching is possible by following means:

Control the overshoot

Shorten the derivation time and prolong the integration time when overshoot occurs.

Achieve the stable state as soon as possible

Shorten the integration time (Ti) and prolong the derivation time (Td) even the overshoot occurs, but the control should be stable as soon as possible.

Control long vibration

If the vibration periods are longer than the set value of integration time (Ti), it is necessary to prolong the integration time (Ti) to control the vibration for the strong integration.

Control short vibration

Short vibration period and the same set value with the derivation time (Td) mean that the derivation time is strong. Shortening the derivation time (Td) can control the vibration. When setting the derivation time as 0.00 (ire no derivation control) is useless to control the vibration, decrease the gain.

7.11 Pulse counter

KOC560 series VFD support pulse counter which can input counting pulse through HDI terminal. When the actual length is longer than or equal to the set length, the digital output terminal can output length arrival pulse signal and the corresponding length will be cleared automatically.

8 Fault tracking

8.1 What this chapter contains

This chapter describes how to reset faults and view fault history. It also lists all alarm and fault messages including the possible cause and corrective actions.

- Only qualified electricians are allowed to maintain the VFD. Read the safety instructions in chapter Safety precautions before working on the VFD.

8.2 Alarm and fault indications

Fault is indicated by LEDs. See Keypad operation procedure. When RIP light is on, an alarm or fault message on the panel display indicates abnormal VFD state. Using the information reference in this chapter, most alarm and fault cause can be identified and corrected. If not, contact office..

8.3 How to reset

The VFD can be reset by pressing the keypad key STOP/RST, through digital input, or by switching the power light. When the fault has been removed, the motor can be restarted.

8.4 Fault history

Function codes F07.27-F07.32 store 6 recent faults. Function codes F07.33 - F07.40, F07.41 F07.48 and F07.49-F07.56 show drive operation data when the latest 3 faults occurs.

8.5 Fault instruction and solution

Do as the following after the VFD fault:

1. Check to ensure there is nothing wrong with the keypad. If not, please contact local office.
2. If there is nothing wrong, please check F07 and ensure the corresponding recorded fault parameters to confirm the real state when the current fault occurs by all parameters.
3. See the following table for detailed solution and check the corresponding abnormal state.
4. Eliminate the fault and ask for relative help.
5. Check to eliminate the fault and carry out fault reset to run the VFD.

8.5.1 Fault instruction and solution

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the Fault type column in the following table indicate the VFD fault type codes read through communication.

Fault code	Fault type	Possible cause	What to do
OUt1	IGBT Ph-U fault	•The acceleration is too fast	- Increase acceleration time -Change the power unit - IGBT module fault
OUt2	IGBT Ph-V fault	- GBeck the driving wires	
OUt3	IGBT Ph-W fault	•Misacts caused by	

Fault code	Fault type	Possible cause	What to do
		interference -The connection of the driving wires is not good, \bullet Grounding is not properly	- Inspect external equipment and eliminate interference
OC1	Over-current when acceleration	-The acceleration or deceleration is too fast -The voltage of the grid is too low -The power of the VFD is too low -The load transients or is abnormal -The grounding is short circuited or the output is phase loss -There is strong external interference -The overvoltage stall protection is not open	- Increase the ACC time - Check the input power - Select the VFD with a larger power - Check if the load is short circuited (the grounding short circuited or the wire short circuited) or the rotation is not smooth -Check the output configuration. \bullet Check if there is strong interference - Check the setting of relative function codes
OC2	Over-current when deceleration		
OC3	Over-current when constant speed running		
OV1	Over-voltage when acceleration		- Check the input power - Check if the DEC time of
OV2	Over-voltage when deceleration	-The input voltage is	the load is too short or the VFD starts during the rotation
OV3	Over-voltage when constant speed running	-There is large energy feedback \bullet No braking components \bullet Braking energy is not open	the dynamic braking components - Install the braking components \bullet Check the setting of relative function codes
UV	DC bus Under-voltage	-The voltage of the power supply is too low -The overvoltage stall protection is not open	- Check the input power of the supply line \bullet Check the setting of relative function codes
OL1	Motor overload	-The voltage of the power supply is too low -The motor setting rated current is incorrect -The motor stall or load transients is too strong	- Check the power of the supply line \bullet Reset the rated current of the motor -Check the load and adjust the torque lift

Fault code	Fault type	Possible cause	What to do
OL2	VFD overload	-The acceleration is too fast -Reset the rotating motor -The voltage of the power supply is too low -The load is too heavy -The motor power is too small	- Increase the ACC time - Avoid the restarting after stopping -Check the power of the supply line - Select a VFD with bigger power - Select a proper motor
SPI	Input phase loss	-Phase loss or fluctuation of input R,S,T	-Check input power -Check installation distribution
SPO	Output phase loss	,V,W phase loss input(or serious asymmetrical three phase of the load)	- Check the output distribution - Check the motor and cable
OH 1	Rectify overheat	-Air duct jam or fan damage -Ambient temperature is too	-Clean the air duct or the fan
OH2	IGBT overheat	high -The time of overload running is too long	-Reduce the ambient temperature
EF	External fault	- SI external fault input terminals action	\bullet-Check the external device input
CE	Communication error	-The baud rate setting is incorrect - Fault occurs to the communication wiring. -The communication address is wrong -There is strong interference to the communication	- Set proper baud rate -Check the communication connection distribution - Set proper communication address -Chang or replace the connection distribution or improve the anti-interference capability
ItE	Current detection fault	-The connection of the control board is not good -Hall components is broken -The modifying circuit is abnormal	- Check the connector and re-plug - Change the hall - Change the main control panel
tE	Autotuning fault	- The motor capacity does not comply with the VFD capability -The rated parameter of the	- Change the VFD model - Set the rated parameter according to the motor nameplate

Fault code	Fault type	Possible cause	What to do
		motor does not set correctly. -The offset between the parameters autotuning and the standard parameter is huge -Autotune overtime	- Empty the motor load and re-identify -Check the motor connection and set the parameter. \bullet Check if the upper limit frequency is above $2 / 3$ of the rated frequency.
EEP	EEPROM fault	-Error of controlling the write and read of the parameters -Damage to EEPROM	-Press STOP/RST to reset - Change the main control panel
PIDE	PID feedback fault	-PID feedback offline -PID feedback source disappear	-Check the PID feedback signal -Check the PID feedback source
bCE	Braking unit fault	-Braking circuit fault or damage to the braking pipes -The external braking resistor is not sufficient	-Check the braking unit and change new braking pipe - Increase the braking resistor
END	Time reach of factory setting	-The actual running time of the VFD is above the internal setting running time	-Ask for the supplier and adjust the setting running time
OL3	Electrical overload	-The VFD will report overload pre-alarm according to the set value	\bullet Check the load and the overload pre-alarm point.
PCE	Keypad communication fault	-The connection of the keypad wires is not good or broken -The keypad wire is too long and affected by strong interference -There is circuit fault on the communication of the keypad and main board	- Check the keypad wires and ensure whether there is mistake -Check the environment and avoid the interference source -Change the hardware and ask for service
UPE	Parameter uploading fault	-The keypad is not in good connection or offline; -The keypad cable is too long and there is strong interference;	\bullet Check the environment and eliminate the interference source; -Change hardware and ask for maintenance service;

Fault tracking

Fault code	Fault type	Possible cause	What to do
		- Part of the communication circuits of the keypad or main board have fault.	-Change hardware and ask for maintenance service.
DNE	Parameter downloading fault (DNE)	-The keypad is not in good connection or offline; -The keypad cable is too long and there is strong interference; -Data storage error in keypad.	-Check the environment and eliminate the interference source; -Change hardware and ask for maintenance service; - Back up data in the keypad again.
ETH1	Grounding shortcut fault 1	-The output of the VFD is short circuited with the	-Check if the connection of
ETH2	Grounding shortcut fault 2	ground -There is fault in the current detection circuit -The actual motor power sharply differs from the VFD power.	-Change the hall - Change the main control panel - Set motor parameters correctly.
LL	Electronic underload fault	-The VFD will report the underload pre-alarm according to the set value	-Check the load and the underload pre-alarm point

8.5.2 Other states

Fault code	Fault type	Possible cause	What to do
PoFF	System power off	System power off or the bus voltage is too low	Check the grid
	Communication failure between the keypad and main control board	The keypad is not connected correctly	Check the installation environment

8.6 Common fault analysis

8.6.1 The motor does not work

8.6.2 Motor vibration

8.6.3 Overvoltage

8.6.4 Undervoltage fault

8.6.5 Abnormal motor heat

8.6.7 Stall during the acceleration of the motor

8.6.8 Overcurrent

8.7 VFD system interference troubleshooting

If sensitive devices (PLC, PC, sensors, test equipment, etc.) exist interference problems when the system is running, you can troubleshoot by the following means:

1. Try plugging in or unplugging the jumper pins of C3 filter to verify whether the interference has been eliminated.
2. Check whether the drive power lines and the signal/ communication lines of sensitive equipment go down the same trough, if there is, it should be again separated from the wiring.
3. If the sensitive equipment and drive to take power from the same grid, it is recommended to install isolation transformer and filter to the distribution of sensitive equipment side.
4. The relative shield wire of sensitive equipment try to ground at both ends , single-grounded, ungrounded respectively; to verify whether the interference has been eliminated.
5. Try to make the interfered sensitive equipment and the drive have no common ground, or floating processing; to verify whether the interference has been eliminated.

8.8 Maintenance and hardware diagnostics

8.8.1 Overcurrent

If installed in an appropriate environment, the VFD requires very little maintenance. The table lists the recommended routine maintenance intervals recommended .

Checking part		Checking item	Checking method	Criterion
Ambient environment		Check the ambient temperature, humidity and vibration and ensure there is no dust, gas, oil fog and water drop.	Visual examination and instrument test	Conforming to the manual
		Ensure there are no tools or other foreign or dangerous objects	Visual examination	There are no tools or dangerous objects.
Voltage		Ensure the main circuit and control circuit are normal.	Measurement by millimeter	Conforming to the manual
Keypad		Ensure the display is clear enough	Visual examination	The characters are displayed normally.
		Ensure the characters are displayed totally	Visual examination	Conforming to the manual
Main circuit	For public use	Ensure the screws are tightened up	Tighten up	NA
		Ensure there is no distortion, crackles, damage or color-changing caused by overheating and aging to the machine and insulator.	Visual examination	NA
		Ensure there is no dust and dirtiness	Visual examination	NA Note: If the color of the copper blocks change, it does not mean that there is something wrong with the features.
	The lead of the conductors	Ensure that there is no distortion or color-changing of the conductors caused by overheating.	Visual examination	NA
		Ensure that there are no crackles or color-changing of the protective layers.	Visual examination	NA

Checking part		Checking item	Checking method	Criterion
	Terminals seat	Ensure that there is no damage	Visual examination	NA
	Filter capacitors	Ensure that there is no weeping, color-changing, crackles and cassis expansion.	Visual examination	NA
		Ensure the safety valve is in the right place.	Estimate the usage time according to the maintenance or measure the static capacity.	NA
		If necessary, measure the static capacity.	Measure the capacity by instruments.	The static capacity is above or equal to the original value *0.85.
	Resistors	Ensure whether there is replacement and splitting caused by overheating.	Smelling and visual examination	NA
		Ensure that there is no offline.	Visual examination or remove one ending to coagulate or measure with multimeters	The resistors are in $\pm 10 \%$ of the standard value.
	Transformers and reactors	Ensure there is no abnormal vibration, noise and smelling,	Hearing, smelling and visual examination	NA
	Electromagnetism contactors and relays	Ensure whether there is vibration noise in the workrooms.	Hearing	NA
		Ensure the contactor is good enough.	Visual examination	NA
Control circuit	PCB and plugs	Ensure there are no loose screws and contactors.	Fasten up	NA
		Ensure there is no smelling and color-changing.	Smelling and visual examination	NA
		Ensure there are no crackles, damage distortion and rust.	Visual examination	NA

Checking part		Checking item	Checking method	Criterion
		Ensure there is no weeping and distortion to the capacitors.	Visual examination or estimate the usage time according to the maintenance information	NA
Cooling system	Cooling fan	Estimate whether there is abnormal noise and vibration.	Hearing and Visual examination or rotate with hand	Stable rotation
		Estimate there is no losses screw.	Tighten up	NA
		Ensure there is no color-changing caused by overheating.	Visual examination or estimate the usage time according to the maintenance information	NA
	Ventilating duct	Ensure whether there is stuff or foreign objection in the cooling fan, air vent.	Visual examination	NA

8.8.2 Cooling fan

The VFD's cooling fan has a minimum life span of 25,000 operating hours. The actual life span depends on the VFD usage and ambient temperature.

The operating hours can be found through F07. 14 (accumulative hours of the VFD).
Fan failure can be predicted by the increasing noise from the fan bearings. If the VFD is operated in a critical part of a process, fan replacement is recommended once these symptoms appear. Replacement fans are available from .

8.8.2.1 Replacing the cooling fan

- Read and follow the instructions in chapter1 Safety precautions. Ignoring the instructions would cause physical injury or death, or damage to the equipment.

1. Stop the VFD and disconnect it from the AC power source and wait for at least the time designated on the VFD.
2. Lever the fan holder off the drive frame with a screwdriver and lift the hinged fan holder slightly upward from its front edge.
3. Loose the fan cable from the clip.
4. Disconnect the fan cable.
5. Remove the fan holder from the hinges.
6. Install the new fan holder including the fan in reverse order. Keep the wind direction of the fan consistent with that of the VFD, as shown below:
7. Restore power.

8.8.3 Capacitors

8.8.3.1 Reforming the capacitors

The DC bus capacitors must be reformed according to the operation instruction if the VFD has been stored for a long time. The storing time is counted form the producing date other than the delivery data which has been marked in the serial number of the VFD.

Time	Operational principle
Storing time less than 1 year	Operation without charging
Storing time 1-2 years	Connect with the power for 1 hour before first ON command
	Use power surge to charge for the VFD Storing time 2-3 years - Apply 25% rated voltage for 30 minutes - Apply 50% rated voltage for 30 minutes - Apply 100% rated voltage for 30 minutes
	Use power surge to charge for 30 minutes the VFD
	- Apply 25% rated voltage for 2 hours
Storing time more than 3 years	- Apply 50% rated voltage for 2 hours
	- Apply 75% rated voltage for 2 hours - Apply 100% rated voltage for 2 hours

The method of using power surge to charge for the VFD:
The right selection of power surge depends on the supply power of the VFD. Single phase 220V AC/2A power surge applied to the VFD with single/three-phase 220V AC as its input voltage. The VFD with single/three-phase 220V AC as its input voltage can apply Single phase 220 V AC/2A power surge. All DC bus capacitors charge at the same time because there is one rectifier.

High-voltage VFD needs enough voltage (for example, 380V) during charging. The small capacitor power (2 A is enough) can be used because the capacitor nearly does not need current when charging.

The operation method of VFD charging through resistors (LEDs):
The charging time is at least 60 minutes if charge the DC bus capacitor directly through supply power. This operation is available on normal temperature and no-load condition and the resistor should be serially connected in the 3-phase circuits of the power supply(the distance between resistors of each phase $\geq 5.5 \mathrm{~mm}$):

380 V drive device: $1 \mathrm{k} / 100 \mathrm{~W}$ resistor. LED of 100 W can be used when the power voltage is no more than 380 V . But if used, the light may be off or weak during charging.

Figure 8-2 380V charging illustration of the driven device

8.8.3.2 Change electrolytic capacitors

- Read and follow the instructions in chapter1Safety precautions. Ignoring the instructions may cause physical injury or death, or damage to the equipment.

Change electrolytic capacitors if the working hours of electrolytic capacitors in the VFD are above 35000.

8.8.4 Power cable

- Read and follow the instructions in chapter1Safety precautions. Ignoring the instructions may cause physical injury or death, or damage to the equipment.

1. Stop the drive and disconnect it from the power line. Wait for at least the time designated on the VFD.
2. Check the tightness of the power cable connections.
3. Restore power.

9 Communication protocol

10.1 What this chapter contains

This chapter describes the communication protocol of KOC560 series VFD.
The KOC560 series VFD provide RS485 communication interface. It adopts international standard MODBUS communication protocol to perform master-slave communication. The user can realize centralized control through PC/PLC, upper control PC, etc. (set the control command, running frequency of the VFD, modify relevant function codes, monitor and control the operating state and fault information of the VFD and so on) to adapt specific application requirements.

10.2 Brief instruction to MODBUS protocol

MODBUS protocol is a software protocol and common language which is applied in the electrical controller. With this protocol, the controller can communicate with other devices via network (the channel of signal transmission or the physical layer, such as RS485). And with this industrial standard, the controlling devices of different manufacturers can be connected to an industrial network for the convenient of being monitored.

There are two transmission modes for MODBUS protocol: ASCII mode and RTU (Remote Terminal Units) mode. On one MODBUS network, all devices should select same transmission mode and their basic parameters, such as baud rate, digital bit, check bit, and stopping bit should have no difference.

MODBUS network is a controlling network with single-master and multiple slaves, which means that there is only one device performs as the master and the others are the slaves on one MODBUS network. The master means the device which has active talking right to send message to MODBUS network for the controlling and inquiring to other devices. The slave means the passive device which sends data message to the MODBUS network only after receiving the controlling or inquiring message (command) form the master (response). After the master sends message, there is a period of time left for the controlled or inquired slaves to response, which ensure there is only one slave sends message to the master at a time for the avoidance of singles impact.

10.3 Application of the VFD

The MODBUS protocol of the VFD is RTU mode and the physical layer is 2-wire RS485.

10.3.1 RS485

The interface of 2 -wire RS485 works on semiduplex and its data signal applies differential transmission which is called balance transmission, too. It uses twisted pairs, one of which is defined as $\mathrm{A}(+)$ and the other is defined as $\mathrm{B}(-)$. Generally, if the positive electrical level between sending drive A and B is among $+2-+6 \mathrm{~V}$, it is logic" 1 ", if the electrical level is among $-2 \mathrm{~V}--6 \mathrm{~V}$; it is logic" 0 ".
$485+$ on the terminal board corresponds to A and $485-$ to B.
Communication baud rate means the binary bit number in one second. The unit is bit/s (bps). The higher the baud rate is, the quicker the transmission speed is and the weaker the anti-interference is. If the twisted pairs of 0.56 mm (24 AWG) is applied as the communication cables, the max. transmission distance is as below:

Baud rate	Max. transmission distance	Baud rate	Max. transmission distance
$2400 B P S$	1800 m	$9600 B P S$	800 m
$4800 B P S$	1200 m	$19200 B P S$	600 m

It is recommended to use shield cables and make the shield layer as the grounding wires during RS485 remote communication.

In the cases with less devices and shorter distance, it is recommended to use 120Q terminal resistor as the performance will be weakened if the distance increase even though the network can perform well without load resistor.

10.3.2 RTU mode

model	definition				
	8-bit binary, each 8-bit frame field contains two hexadecimal characters, hexadecimal 0 to 9, A-F				
	Start bit, 8 data bits, check bit, and stop bit. The following table describes the data format: 11-bit character frame				
	Start bit	BIT1	BIT2	BIT3	
BIT4	BIT5	BIT6	BIT7	BIT8	
check bit	stop bit				

In RTU mode, a new frame always begins with a transmission time silence of at least 3.5 bytes. On a network where the transmission rate is calculated at baud rate, the transfer time of 3.5 bytes can be easily grasped. The following data fields are: slave address, operation command code, data and CRC check word, each field transmission byte is hexadecimal 0.9, A... F. The network device always monitors the activity of the communication bus. When the first field (address information) is received, each network device acknowledges the byte. As the last byte is transmitted, there is a similar 3.5 -byte transmission interval to indicate the end of the frame, after which a new frame is transmitted.

RTU data frame format

The whole message frame in RTU mode is a continuous transmitting flow. If there is an interval time (more than 1.5 bytes) before the completion of the frame, the receiving device will renew the uncompleted message and suppose the next byte as the address field of the new message. As such, if the new message follows the previous one within the interval time of 3.5 bytes, the receiving device will deal with it as the same with the previous message. If these two phenomena all happen during the transmission, the CRC will generate a fault message to respond to the sending devices.

The standard structure of RTU frame:

START	T1-T2-T3-T4(transmission time of 3.5 bytes)
ADDR	Communication address: $0-247$ (decimal system) $(0$ is the broadcast address)
CMD	$03 \mathrm{H}:$ read slave parameters $06 \mathrm{H}:$ write slave parameters
DATA (N-1) \ldots	The data of 2*N bytes are the main content of the communication as well as the core of data exchanging
CRC CHK low bit	Detection value: CRC (16BIT)
CRC CHK high bit	T1-T2-T3-T4(transmission time of 3.5 bytes)
END	

10.3.3 ASCII 模式

model	definition								
coding system	Communication protocol belongs to hexadecimal, ASCII information character meaning: " 0 "... " 9 ", " A "... " F " is every hexadecimal ASCII information for the corresponding character:								
	character	'0'	'1'	'2'	' 3 '	'4'	'5'	'6'	'7'
	$\begin{aligned} & \text { ASCII } \\ & \text { CODD } \end{aligned}$	0×30	0X31	0X32	0×33	0X34	0X35	0X36	0X37
	character	'8'	'9'	' A '	'B'	'C'	'D'	'E'	'F'
	$\begin{array}{\|l\|l\|} \text { ASCCII } \\ \text { CODE } \end{array}$	0X38	0X39	0X41	0X42	0X43	0X44	0X45	0X46
Data format	Start bit, $7 / 8$ data bit, check bit, and stop bit. The data format is described in the following table: 11-bit character frame:								
	Start bit BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 check bit stop bit								
	10-bit character frame:								
				BIT4	BIT5 B	BIT6 BIT7	7 BIT8	check bit	stop bit

In ASCII mode, the frame header is ":" (" 0x3A "), and the frame tail is "CRLF" (" 0x0D "" 0x0A") by default. In ASCII mode, except

Except for the frame header and frame tail, the remaining data bytes are sent in ASCII, first the high 4bit byte, then the low 4-bit byte

A byte. In ASCII mode, the data is 8 bits long. For 'A' to ' F ', the ASCII code with its uppercase letters is used. At this time, the data is LRC

The verification covers the information from the slave address to the data. The checksum equals the sum of all characters (discard carry) participating in the checksum data Complement.

ASCII data frame format

10.3.4 RTU communication frame error checkout

The error check method of the frame mainly includes two parts of the check, that is, the bit check of the byte (parity check) and the whole data check of the frame (CRC),Check or LRC check)

10.3.4.1 Bit checkout of the byte

The user can select different bit checkouts or non-checkout, which impacts the check bit setting of each byte.

The definition of even checkout: add an even check bit before the data transmission to illustrate the number of " 1 " in the data transmission is odd number or even number. When it is even, the check byte is " 0 ", otherwise, the check byte is" 1 ". This method is used to stabilize the parity of the data.

The definition of odd checkout: add an odd check bit before the data transmission to illustrate the number of " 11 " in the data transmission is odd number or even number. When it is odd, the check byte is " 0 ", otherwise, the check byte is" 1 ". This method is used to stabilize the parity of the data.

For example, when transmitting "11001110", there are five "1" in the data. If the even checkout is applied, the even check bit is "1"; if the odd checkout is applied; the odd check bit is " 0 ". The even and odd check bit is calculated on the check bit position of the frame. And the receiving devices also carry out even and odd checkout. If the parity of the receiving data is different from the setting value, there is an error in the communication.

10.3.4.2 CRC check

The checkout uses RTU frame format. The frame includes the frame error detection field which is based on the CRC calculation method. The CRC field is two bytes, including 16 figure binary values. It is added into the frame after calculated by transmitting device. The receiving device recalculates the CRC of the received frame and compares them with the value in the received CRC field. If the two CRC values are different, there is an error in the communication.

During CRC, 0^{*} FFFF will be stored. And then, deal with the continuous 6 -above bytes in the frame and the value in the register. Only the 8Bit data in every character is effective to CRC, while the start bit, the end and the odd and even check bit is ineffective.

The calculation of CRC applies the international standard CRC checkout principles. When the user is editing CRC calculation, he can refer to the relative standard CRC calculation to write the required CRC calculation program.

Here provided a simple function of CRC calculation for the reference (programmed with C language):

```
unsigned int crc_cal_value(unsigned char * data_value,unsigned char
data_length)
{
int i;
unsigned int crc_value=0xffff;
while(data_length--)
{ crc_value^=*data_value++;
    for(i=0;i<8;i++)
    {
if(crc_value&0x0001)crc_value=(crc_value>>1)^0xa001;
    else crc_value=crc_value>>1;
    } }
return(crc_value);
}
```

In ladder logic, CKSM calculated the CRC value according to the frame with the table inquiry. The method is advanced with easy program and quick calculation speed. But the ROM space the program occupied is huge. So use it with caution according to the program required space.

10.3.4.3 LRC check

LRC Check The sum of the results from Address to Data Content, such as the check of the communication information in 2.2.2 above Code: $0 \times 02+0 \times 06+0 \times 00+0 \times 08+0 \times 13+0 \times 88=0 \times A B$, then take 2's complement $=0 \times 55$.
Now provide an LRC calculation and simple function for the user's reference (programmed in C language) :

Static unsigned char

```
LRC(auchMsg,usDataLen)
unsigned char *auchMsg;
unsigned short usDataLen;
{
unsigned char uchLRC=0;
while(usDataLen--)
uchLRC+=*auchMsg++;
return((unsigned char)(~((char)uchLRC)));
```


10.4 RTU command code and communication data illustration

10.4.1 RTU mode

10.4.1.1 Command code: 03H read N words (Word) ($\mathrm{N} \leq 16$)

Command code 03H means that if the master read data from the VFD, the reading number depends on the "data number" in the command code. Max. continuous reading number is 16 and the parameter address should be continuous. The byte length of every data is 2 (one word). The following command format is illustrated by hex (a number with "H" means hex) and one hex occupies one byte.

The command code is used to read the working step of the VFD.
For example, read continuous 2 data content from0004H from the VFD with the address of 01 H (read the content of data address of 0004 H and 0005 H), the frame structure is as below:

RTU host command information (the command sent by the host to the frequency converter)		RTU slave response information (information sent by the frequency converter to the host)	
START	T1-T2-T3-T4 (transmission time of 3.5 bytes)	START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H	ADDR	01H
CMD	03H	CMD	03H
High bit of the start address	00H	Byte count	04H
Low bit of the start address	04H	Address 0004H high bit of date number	13H
High bit of data number	OOH	Address 0004H low bit of date number	88H
Low bit of data number	02H	Address 0005H high bit of date number	00 H
CRC low bit	85H	Address 0005H low bit of date number	00H
CRC high bit	CAH	CRC low bit	7EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)	CRC high bit	9DH
		END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.4.1.2 Command code: 06 H

06H (correspond to binary 0000 0110), write one word (Word)
The command means that the master write data to the VFD and one command can write one data other than multiple dates. The effect is to change the working mode of the VFD.

For example, write $5000(1388 \mathrm{H})$ to 0004 H from the VFD with the address of 02 H , the frame structure is as below:

RTU master command message (from the master to the VFD)

RTU host command information (the command sent by the host to the frequency converter)		RTU slave response information (information sent by the frequency converter to the host)	
START	T1-T2-T3-T4 (transmission time of 3.5 bytes)	START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H	ADDR	02H
CMD	06H	CMD	06H
High bit of the wtite data	00H	High bit of the wtite data	OOH
Low bit of the wtite data	04H	Low bit of the wtite data	- 04 H
High bit of data content	13H	High bit of data content	- 13 H
Low bit of data content	88H	Low bit of data content	- 88 H
CRC low bit	C5H	CRC low bit	C5H
CRC high bit	6EH	CRC high bit	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)	END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

10.4.1.3 Command code 08H for diagnosis

Meaning of sub-function codes

Sub-function Code	Description
0000	Return to inquire information data

For example: The inquiry information string is same as the response information string when the loop detection to address 01 H of driver is carried out.

RTU host command information (the command sent by the host to the frequency converter)		RTU slave response information (information sent by the frequency converter to the host)	
START		T1-T2-T3-T4 (transmission time of 3.5 bytes)	START
ADDR	01 H	T1-T2-T3-T4 (transmission time of 3.5 bytes)	
CMD	08 H	ADDR	01 H
High bit of the sub-function code	00 H	CMD	08 H
Low bit of the sub-function code	00 H	High bit of the sub- function code	00 H
High bit of data content	12 H	Low bit of the sub- function code	00 H
Low bit of data content	ABH	High bit of data content	12 H
CRC CHK low bit	ADH	Low bit of data content	ABH
CRC CHK high bit	14 H	CRC CHK low bit	ADH
END	CRC CHK high bit	14 H	

10.4.1.4 Command code: 10 H , continuous writing

Command code 10 H means that if the master writes data to the VFD, the data number depends on the "data number" in the command code. The max. continuous reading number is 16.

For example, write $5000(1388 \mathrm{H})$ to 0004 H of the VFD whose slave address is 02 H and $50(0032 \mathrm{H})$ to 0005 H , the frame structure is as below:

RTU host command information (the command sent by the host to the frequency converter)		RTU slave response information (information sent by the frequency converter to the host)	
START	T1-T2-T3-T4 (transmission time of 3.5 bytes)	START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H	ADDR	02H
CMD	10 H	CMD	10 H
High bit of write data address	OOH	High bit of write data address	OOH
Low bit of write data address	04H	Low bit of write data address	04H
High bit of data number	00H	High bit of data number	00H
Low bit of data number	02H	Low bit of data number	02H
bits counter	04H	CRC low bit	C5H
high bit of data 0004H content	13H	CRC high bit	6EH
low bit of data 0004 H content	88H	END	T1-T2-T3-T4 (transmission time 3.5 bytes)
high bit of data 0005H content	OOH		
low bit of data 0005H content	32 H		
CRC low bit	C5H		
CRC high bit	6EH		
END	T1-T2-T3-T4 transmission time of 3.5 bytes)		

10.4.2 ASCII mode

10.4.2.1 Command code: 03H (0000 0011), read N words (Word) ($\mathrm{N} \leqslant 16$ words)

For instance: As for the VFD whose slave address is 01 H , the starting address of internal storage is 0004, read two words continuously, the structure of this frame is listed as below:

ASCII master command message (the command sent from master to the VFD		ASCII slave response message (the message sent from VFD to the master)	
START	' ${ }^{\prime}$	START	':'
ADDR	'0'	ADDR	'0'
	'1'		'1'
CMD	'0'	CMD	'0'
	'3'		'3'
High bit of starting address	'0'	Byte number	'0'
	'0'		'4'
Low bit of starting address	'0'	High bit of data address$0004 \mathrm{H}$	'1'
	'4'		'3'
High bit of data number	'0'	Low bit of data address0004H	'8'
	'0'		'8'
Low bit of data number	'0'	High bit of data address$0005 \mathrm{H}$	'0'
	'2'		'0'
LRC CHK Hi	'F'	Low bit of data address$0005 \mathrm{H}$	'0'
LRC CHK Lo	'6'		'0'
END Hi	CR	LRC CHK Hi	'5'
END Lo	LF	LRC CHK Lo	'D'
		END Hi	CR
		END Lo	LF

10.4.2.2 Command code: 06H (0000 0110), write one word (Word)

For instance: Write $5000(1388 \mathrm{H})$ to the 0004 H address of the VFD whose slave address is 02 H , then the structure of this frame is listed as below:

ASCII master command message (the command sent by the master to the VFD)		ASCII slave response message (the message sent by the VFD to the master)	
Low bit of write data	'0'	Low bit of write data	'0'
	'4'		'4'
High bit of data content	'1'	High bit of data content	'1'
	'3'		'3'
Low bit of data content	'8'	Low bit of data content	'8'
	'8'		'8'
LRC CHK Hi	'5'	LRC CHK Hi	'5'
LRC CHK Lo	'9'	LRC CHK Lo	'9'
END Hi	CR	END Hi	CR
END Lo	LF	END Lo	LF

10.4.2.3 Command code: 08 H (0000 1000), diagnose function

Meaning of sub function code:

Sub function code	Instruction
0000	Return inquiry message data

For instance: carry out circuit detection on drive address 01 H , the content of inquiry message word string is the same with response message word string, its format is listed as below:

ASCII master command message (the command sent by the master to the VFD)		ASCII slave response message (the message sent by the VFD to the master)	
START	' ${ }^{\prime}$	START	':'
ADDR	'0'	ADDR	'0'
	'1'		'1'
CMD	'0'	CMD	'0'
	'8'		'8'
High bit of write data address	'0'	High bit of write data address	'0'
	'0'		'0'
Low bit of write data address	'0'	Low bit of write data address	'0'
	'0'		'0'
High bit of data content	'1'	High bit of data content	'1'
	'2'		'2'
Low bit of data content	' ${ }^{\text {' }}$	Low bit of data content	' A^{\prime}
	'B'		'B'
LRC CHK Hi	'3'	LRC CHK Hi	'3'
LRC CHK Lo	' A '	LRC CHK Lo	' A '
END Hi	CR	END Hi	CR
END Lo	LF	END Lo	LF

10.4.2.4 Command code: 10 H , continuous writing function

Command code 10 H means the master write data to the VFD, the number of data being written is determined by the command "data number", the max. number of continuous writing is 16 words.

For instance: Write $5000(1388 \mathrm{H})$ to 0004 H of the VFD whose slave address is 02 H , write $50(0032 \mathrm{H})$ to 0005 H of the VFD whose slave address is 02 H , then the structure of this frame is listed as below:

ASCII master command message (the command sent by the master to the VFD)		ASCII slave response message (the message sent by the VFD to the master)	
START	':'	START	':'
ADDR	'0'	ADDR	'0'
	'2'		'2'
CMD	'1'	CMD	'1'
	'0'		'0'
High bit of starting address	'0'	High bit of starting address	'0'
	'0'		'0'
Low bit of starting address	'0'	Low bit of starting address	'0'
	'4'		'4'
High bit of data number	'0'	High bit of data number	'0'
	'0'		'0'
Low bit of data number	'0'	Low bit of data number	'0'
	'2'		'2'
Byte number	'0'	LRC CHK Hi	'E'
	'4'	LRC CHK Lo	'8'
High bit of data 0004H content	'1'	END Hi	CR
	'3'	END Lo	LF
Low bit of data 0004H content	'8'		
	'8'		
High bit of data 0005H content	'0'		
	'0'		
Low bit of data 0005H content	'3'		
	'2'		
LRC CHK Hi	'1'		
LRC CHK Lo	'7'		
END Hi	CR		
END Lo	LF		

10.5 The definition of data address

The address definition of the communication data in this part is to control the running of the VFD and get the state information and relative function parameters of the VFD.

10.5.1 The rules of parameter address of the function codes

The parameter address occupies 2 bytes with the fact that the high bit is in the front and the low bit is in the behind. The range of high and low byte are: high byte-00-ffH; low byte-00-ffH. The high byte is the group number before the radix point of the function code and the low byte is the number after the radix point. But both the high byte and the low byte should be changed into hex. For example F05.06, the group number before the radix point of the function code is 05 , then the high bit of the parameter is 05 , the number after the radix point 05 , then the low bit of the parameter is 06 , then the function code address is 0506 H and the parameter address of F 10.01 is 0 A 01 H .

Function code	Name	Parameter description	Default value	Modify	NO.
F10.00	Simple PLC means	0: Stop after running once. 1: Run at the final value after running once. 2. Cycle running.	0	0	420
F10.01	Simple PLC memory selection	0: Power loss without memory 1: Power loss: PLC record the running stage and frequency when power loss.	0	\bigcirc	421

Note: F29 group is the factory parameter which cannot be read or changed. Some parameters cannot be changed when the VFD is in the running state and some parameters cannot be changed in any state. The setting range, unit and relative instructions should be paid attention to when modifying the function code parameters.

Besides, EEPROM is stocked frequently, which may shorten the usage time of EEPROM. For users, some functions are not necessary to be stocked on the communication mode. The needs can be met on by changing the value in RAM. Changing the high bit of the function code form 0 to 1 can also realize the function. For example, the function code F00.07 is not stocked into EEPROM. Only by changing the value in RAM can set the address to 8007 H . This address can only be used in writing RAM other than reading. If it is used to read, it is an invalid address.

10.5.2 The address instruction of other function in MODBUS

The master can operate on the parameters of the VFD as well as control the VFD, such as running or stopping and monitoring the working state of the VFD.

The following table shows the parameter list of other functions:

Function instruction	Address definition	Data meaning instruction	R/W characteristics
Communication control command	2000H	0001H: forward running	RW
		0002H: reverse running	
		0003H: forward jogging	
		0004H: reverse jogging	
		0005H: stop	
		0006H: coast to stop	
		0007H: fault reset	
		0008H: jogging stop	

Function instruction	Address definition	Data meaning instruction	R/W characteristics
The address of the communication n setting value	2001H	Communication setting frequency ($0-$ Fmax (unit: 0.01 Hz))	RW
	2002H	PID reference, range (0 - 1000, 1000 corresponds to100.0\%)	
	2003H	PID feedback, range (0 - 1000, 1000 corresponds to100.0\%)	RW
	2004H	Torque setting value (-3000-3000, 1000 corresponds to the 100.0% of the rated current of the motor)	RW
	2005H	The upper limit frequency setting during forward rotation (0-Fmax (unit: 0.01 Hz))	RW
	2006H	The upper limit frequency setting during reverse rotation (0 - Fmax (unit: 0.01 Hz))	RW
	2007H	The upper limit torque of electromotion torque (0-3000, 1000 corresponds to the 100.0% of the rated current of the motor)	RW
	2008H	The upper limit torque of braking torque (0-3000, 1000 corresponds to the 100.0% of the rated current of the motor)	RW
	2009H	Special control command word $\begin{aligned} & \text { Bit0-1: }=00: \text { motor } 1 \quad=01: \text { motor } 2 \\ &=10: \text { motor } 3 \quad=11 \text { : motor } 4 \\ & \text { Bit2: }=1 \text { torque control }=0: \text { speed control } \end{aligned}$	RW
	200AH	Virtual input terminal command , range: $0 \times 000-0 \times 1 \mathrm{FF}$	RW
	200BH	Virtual output terminal command , range: 0x00-0x0F	RW
	200CH	Voltage setting value(special for V/F separation) (0-1000, 1000 corresponds to the 100.0% of the rated voltage of the motor)	RW
	200DH	AO output setting 1 (-1000-1000, 1000 corresponds to 100.0%)	RW
	200EH	AO output setting 2(-1000-1000, 1000 corresponds to 100.0%)	RW
		0001H: forward running	
SW 1 of the VFD	2100 H	0002H: forward running	R
		0003H: stop	

Function instruction	Address definition	Data meaning instruction	R/W characteristics
		0004H: fault	
		0005H: POFF state	
SW 2 of the VFD	2101H	Bit0: $=0$: bus voltage is not established $=1$: bus voltage is established Bi1-2: =00: motor $1=01$: motor 2 =10: motor $3=11$: motor 4 Bit3: $=0$: asynchronous motor $=1$: synchronous motor Bit4: =0: pre-alarm without overload $=1$: overload pre-alarm Bit5- Bit6: =00: keypad control =01: terminal control $=10$: communication control	R
Fault code of the VFD	2102H	See the fault type instruction	R
Identifying code of the VFD	2103H	KOC560 -----0x0107	R
Operation frequency	3000 H	Range: $0.00 \mathrm{~Hz}-\mathrm{P} 00.03$	R
Setting frequency	3001H	Range: $0.00 \mathrm{~Hz}-\mathrm{P} 00.03$	R
Bus voltage	3002H	Range: 0-1200V	R
Output voltage	3003H	Range: 0-1200V	R
Output current	3004H	Range: 0.0-5000.0A	R
Operation speed	3005H	Range: 0-65535RPM	R
Output power	3006H	Range: -300.0-300.0\%	R
Output torque	3007H	Range: 0-65535RPM	R
Close loop setting	3008 H	Range:-100.0\% - 100.0\%	R
Close loop feedback	3009H	Range:-100.0\% - 100.0\%	R
Input IO state	300AH	Range: 0000-00FF	R
Output IO state	300BH	Range: 0000-00FF	R
Al 1	300CH	Range: $0.00-10.00 \mathrm{~V}$	R
Al 2	300DH	Range: $0.00-10.00 \mathrm{~V}$	R
Al 3	300EH	Range: $0.00-10.00 \mathrm{~V}$	R
Al 4	300 FH	Reserved	R
Read high speed pulse 1 input	3010 H	Range: $0.00-50.00 \mathrm{kHz}$	R

Function instruction	Address definition	Data meaning instruction	R/W characteristics
Read high speed pulse 2 input	3011 H	Reserved	R
Read current step of multi-step speed	3012 H	Range: 0-15	R
External length	3013 H	Range: 0-65535	R
External counting value	3014 H	Range: 0-65535	R
Torque setting	3015 H	Range: 0-65535	R
VFD code	3016 H		R
Fault code	5000 H		R

R/W characteristics means the function is with read and write characteristics. For example, "communication control command" is writing chrematistics and control the VFD with writing command $(06 \mathrm{H})$. R characteristic can only read other than write and W characteristic can only write other than read.

10.5.3 Fieldbus ratio values

The communication data is expressed by hex in actual application and there is no radix point in hex. For example, 50.12 Hz cannot be expressed by hex so 50.12 can be magnified by 100 times into 5012, so hex 1394 H can be used to express 50.12.

A non-integer can be timed by a multiple to get an integer and the integer can be called fieldbus ratio values.

The fieldbus ratio values are referred to the radix point of the setting range or default value in the function parameter list. If there are figures behind the radix point $(n=1)$, then the fieldbus ratio value m is 10^{n}. Take the table as the example:

Function code	Name	Details	Default value	Modify	NO.
F01.20	Wake-up from sleep delay time	$0.0-3600.0$ s (valid when P01.19=2)	0.0 s	\bigcirc	422

If there is one figure behind the radix point in the setting range or the default value, then the fieldbus ratio value is 10 . If the data received by the upper monitor is 50 , then the "hibernation restore delay time" is $5.0(5.0=50 \div 10)$.

If MODBUS communication is used to control the hibernation restore delay time as 5.0 s. Firstly, 5.0 can be magnified by 10 times to integer $50(32 \mathrm{H})$ and then this data can be sent.

After the VFD receives the command, it will change 50 into 5 according to the fieldbus ratio value and then set the hibernation restore delay time as 5 s .

Another example, after the upper monitor sends the command of reading the parameter of hibernation restore delay time, if the response message of the VFD is as following:

01	$\underline{03}$	02	0032	3991
$\underset{\substack{\text { VFD } \\ \text { address }}}{\text { den }}$	${ }_{\text {Read }}^{\text {Remmand }}$	$\begin{aligned} & \text { 2-byte } \\ & \text { data } \end{aligned}$	Parameters data	CRC check

Because the parameter data is $0032 \mathrm{H}(50)$ and 50 divided by 10 is 5 , then the hibernation restore delay time is 5 s .

10.5.4 Fault message response

There may be fault in the communication control. For example, some parameter can only be read. If a writing message is sent, the VFD will return a fault response message.

The fault message is from the VFD to the master, its code and meaning is as follows:

Code	Name	Meaning
01 H	Illegal command	The command from master cannot be executed. The reason maybe: 1. This command is only for new version and this version cannot realize. 2. Slave is in fault state and cannot execute it.
02 H	Illegal data address.	Some of the operation addresses are invalid or not allowed to access. Especially the combination of the register and the transmitting bytes are invalid.
03 H	Illegal value	When there are invalid data in the message framed received by slave. Note: This error code does not indicate the data value to write exceed the range, but indicate the message frame is an illegal frame.

Code	Name	Meaning
04 H	Operation failure	The parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.
05 H	Password error	The password written to the password check address is not same as the password set by F07.00.
06 H	Data frame error	In the frame message sent by the upper monitor, the length of the digital frame is incorrect or the counting of CRC check bit in RTU is different from the lower monitor.
07 H	Parameter read-only	It only happen in write command, the reason maybe: 1. The written data exceeds the parameter range. 2. The parameter should not be modified now. 3. The terminal has already been used.
08 H	The parameter cannot be changed during running	The modified parameter in the writing of the upper monitor cannot be modified during running.
09 H	Password protection	When the upper monitor is writing or reading and the user password is set without password unlocking, it will report that the system is locked.

The slave uses functional code fields and fault addresses to indicate it is a normal response or some error occurs (named as objection response). For normal responses, the slave shows corresponding function codes, digital address or sub-function codes as the response. For objection responses, the slave returns a code which equals the normal code, but the first byte is logic 1.

For example: when the master sends a message to the slave, requiring it to read a group of address data of the VFD function codes, there will be following function codes:

$$
00000011 \text { (Hex 03H) }
$$

For normal responses, the slave responds the same codes, while for objection responses, it will return:

10000011 (Hex 83H)

Besides the function codes modification for the objection fault, the slave will respond a byte of abnormal code which defines the error reason.

When the master receives the response for the objection, in a typical processing, it will send the message again or modify the corresponding order.

For example, set the "running command channel" of the VFD (F00.01, parameter address is 0001H) with the address of 01 H to 03 , the command is as following:

01	06	0001	0003	$980 B$
VFD address	Write command	Parameters address	Parameters data	CRC check

But the setting range of "running command channel" is $0-2$, if it is set to 3 , because the number is beyond the range, the VFD will return fault response message as below:

Abnormal response code 86 H means the abnormal response to writing command 06 H ; the fault code is 04 H . In the table above, its name is operation failed and its meaning is that the parameter setting in parameter writing is invalid. For example, the function input terminal cannot be set repeatedly.

10.6 Example of writing and reading

Refer to11.4for the command format.

10.6.1 Example of reading command 03H

Read the state word 1 of the VFD with the address of 01 H (refer to the parameter list in9.5.2). From the table 1, the parameter address of the state word 1 of the VFD is 2100 H .

RTU mode:

The command sent to the VFD:

$\frac{01}{}$	$\underline{03}$	$\underline{2100}$	0001	8E 36
RFD address Remmand	Parameters address	Data number	CRC check	

The response message may be as follows:

01	$\underline{03}$	$\underline{02}$	$\underline{0003}$	$\underline{\text { F8 45 }}$
VFD address	Read command	Data address	Data content	CRC check

ASCII mode:
The command sent to the VFD:

$$
\therefore \quad \frac{01}{\therefore} \quad \frac{03}{\text { START }} \begin{gathered}
\begin{array}{c}
\text { Read } \\
\text { address } \\
\text { command }
\end{array}
\end{gathered} \frac{2100}{\begin{array}{c}
\text { Parameters } \\
\text { address }
\end{array}} \frac{0001}{\begin{array}{c}
\text { Data } \\
\text { number }
\end{array}} \frac{\begin{array}{c}
\text { LRC } \\
\text { check }
\end{array}}{\text { DA }} \quad \frac{\text { CR LF }}{\text { END }}
$$

If the operation is successful, the response may be as follows:
\vdots
START

$\frac{03}{\begin{array}{c}\text { Read } \\ \text { command }\end{array}}$
$\underset{\begin{array}{c}\text { Byte } \\ \text { number }\end{array}}{02} \frac{0003}{\begin{array}{c}\text { Data } \\ \text { content }\end{array}} \frac{\mathrm{F7}}{\begin{array}{c}\text { LRC } \\ \text { check }\end{array}}$
CR LF
END

The data content is 0003 H , which indicates the VFD is in the stopped state.

10.6.2 Example of writing command 06 H

Example 1: make the VFD with the address of 03 H to run forward. Refer to the table of other function parameters, the address of "communication control command" is 2000 H and forward running is 0001. See the following table.

Function instruction	Address definition	Data meaning instruction	R/W characteristics
Communication control command	2000H	0001H: forward running	RW
		0002H: reverse running	
		0003H: forward jogging	
		0004H: reverse jogging	
		0005H: stop	
		0006H: coast to stop	
		0007H: fault reset	
		0008H: jogging stop	

RTU mode:

The command sent by the master:

$\underline{03}$	$\underline{06}$	$\underline{2000}$	$\underline{0001}$	$\underline{4228}$
VFD address	Write command	Parameters address	Forward running	CRC check

If the operation is successful, the response may be as follows (the same with the command sent by the master):

03	$\underline{06}$	$\underline{2000}$	$\underline{0001}$	$\underline{4228}$
Write Vaddress command	Parameters address	Forward running	CRC check	

ASCII mode:

The command sent to the VFD:

If the operation is successful, the response may be as follows (the same with the command sent by the master):

:	01	06	2000	0001	D6	CR LF
START	VFD address	Write command	Parameters address	Data number	LRC check	END

Example 2: set the max. output frequency of the VFD with the address of 03 H as 100 Hz .

Function code	Name	Details	Setting range	Default value	Modify	NO.
F00.03	Max output frequency	F00.04-600.00Hz $(400.00 \mathrm{~Hz})$	$10.00-600.00$	50.00 Hz	\bigcirc	423

See the figures behind the radix point, the fieldbus ratio value of the max. output frequency (F00.03) is 100.100 Hz timed by 100 is 10000 and the corresponding hex is 2710 H .

RTU mode:

The command sent by the master:

03	06	0003	2710	6214
FD	Write		Parameter	CRC ch

If the operation is successful, the response may be as below (the same with the command sent by the master):

03	06	0003	2710	6214
VFD address	Write command	Parameters address	Parameter data	CRC check

ASCII mode:

The command sent to the VFD:

If the operation is successful, the response may be as follows (the same with the command sent by the master):

\vdots	03	$\underline{0}$	0003	2710	D	R LF
START	VFD address	Write command	Parameters address	Data number	LRC check	END

10.6.3 Example of continuous writing command 10 H

Example 1: make the VFD whose address is 01 H run forward at 10 Hz . Refer to the instruction of 2000 H and 0001. Set the address of "communication setting frequency" is 2001 H and 10 Hz corresponds to 03E8H. See the table below.

Function instruction	Address definition	Data meaning instruction	R/W characteristics
Communication control command	2000H	0001H: forward running	RW
		0002H: reverse running	
		0003H: forward jogging	
		0004H: reverse jogging	
		0005H: stop	
		0006H: coast to stop	
		0007H: fault reset	
		0008H: jogging stop	
The address of communication setting	2001H	Communication setting frequency($0-\mathrm{Fmax}$ (unit: 0.01 Hz)	RW
	2002H	PID given, range(0-1000, 1000 corresponds to100.0\%)	

RTU mode:

The command sent to the VFD:

$\underline{01}$	10	2000	0002	04	$\underline{00} 0103 \mathrm{E8}$	3B 10
$\underset{\text { ald }}{\text { adress }}$		$\xrightarrow[\substack{\text { Patameiess } \\ \text { addoss }}]{ }$	${ }_{\substack{\text { Data } \\ \text { number }}}^{\text {ate }}$	cen	$\substack{\text { Fommad } \\ \text { unnung }}$	cric cheod

If the operation is successful, the response may be as follows:

01	10	0	00	4A 08
VFD address	Continuous writing	Parameters address	Data number	CRC check

ASCII mode:

The command sent to the VFD:

\vdots	01	10	2000	02	04	0001	E8	BD	CR LF
START	VFD address	Continuous writing command	Parameters address	$\begin{gathered} \text { Data } \\ \text { number } \end{gathered}$	Byte number	Forward running	10 Hz	LRC check	END

If the operation is successful, the response may be as follows:

Example 2: set the ACC time of 01H VFD as 10s and the DEC time as 20s

Function code	Name	Parameter description	Default value	Modify
F00.11	Acceleration time 1	Setting range of F00. 11 and	Model depended	0
F00.12	Deceleration time 1	F00.12: 0.0-3600.0s	\bigcirc	

The corresponding address of F 00.11 is 000 B , the ACC time of 10 s corresponds to 0064 H , and the DEC time of 20 s corresponds to 00 C 8 H .

RTU mode:

The command sent to the VFD:

$\underline{01}$	10	00 0B	$\underline{00} 02$	04	$\underline{006400 \mathrm{C8}}$	F2 55
$\begin{gathered} \text { vif } \\ \text { addeses } \end{gathered}$	$\begin{aligned} & \text { Continuous } \\ & \text { writing } \end{aligned}$	Parameters address	Data numbe	Byte number	${ }_{10 \mathrm{~s}}{ }_{20 \mathrm{~s}}$	CRC check

If the operation is successful, the response may be as follows:

01	10	00 0B	0002	300 A
$\underset{\substack{\text { ved } \\ \text { adress }}}{\text { cen }}$	$\begin{aligned} & \text { Continuou } \\ & \text { writing } \end{aligned}$	Parameters address	${ }_{\substack{\text { Data } \\ \text { number }}}^{\text {den }}$	CRC check

ASCII mode:

The command sent to the VFD:

If the operation is successful, the response may be as follows:

Note: The blank in the above command is for illustration. The blank cannot be added in the actual application unless the upper monitor can remove the blank by themselves.

10.6.4 MOBUS Communication debugging example

The host is a PC, and RS232-RS485 converter is used for signal conversion. The serial port of the PC used by the converter is COM1 (RS232 port). PC debugging software for serial debugging assistant, the software can be downloaded online search, download as far as possible to find with automatic CRC check function. The following figure shows the interface of the serial debugging assistant used.

Set Serial Port to COM1. The baud rate must be consistent with that set in F14.01. The data bit, check bit, and stop bit must be consistent with those set in F14.02. Because the RTU mode is used, select HEX. To automatically add CRC to the software, be sure to select it and select CRC16(ModbusRTU) with a starting byte of 1 . Once CRC check is enabled, do not fill in CRC when filling in instructions, otherwise it will repeat and lead to instruction errors.
The debugging instruction is to run the frequency converter with address 03H forward (11.4.7.2 Example 1), that is, the instruction:

VFD address

Note:

1, the frequency converter address (F14.00) must be set to 03;
2, set "Run instruction channel" (F00.01) to "Communication run instruction channel", and also set "Communication run instruction channel selection" (F00.02) to "MODBUS communication channel". Click Send, if the line and Settings are correct, you will receive a response message from the inverter.

$03 \quad 06 \quad 2000 \quad 0001 \quad 4228$

VFD address write command parameter address forward running CRC check

10.7 Common Communication faults

Common communication faults include: no communication response and abnormal return of the frequency converter.
Possible reasons for no communication response are: the serial port selection is wrong, such as the converter is using COM1, COM2 is selected during communication;

Baud rate, data bit, stop bit, check bit and other parameters are not consistent with the frequency converter;
RS485 bus +, - polarity reverse connection;
The 485 cable cap on the terminal board of the frequency converter is not plugged in. The cable cap is located behind the terminal block.

Appendix A Technical data

A. 1 What this chapter contains

This chapter contains the technical specifications of the VFD, as well as provisions for fulfilling the requirements for CE and other marks.

A. 2 Ratings

A.2.1 Capacity

VFD sizing is based on the rated motor current and power. To achieve the rated motor power reference in the table, the rated current of the VFD must be higher than or equal to the rated motor current. Also the rated power of the VFD must be higher than or equal to the rated motor power. The power ratings are the same regardless of the supply voltage within one voltage range.

Note:

1. The maximum allowed motor shaft power is limited to 1.5 times of the rated power of the motor. If the limit is exceeded, motor torque and current are automatically restricted. The function protects the input bridge of the drive against overload.
2. The ratings apply at ambient temperature of $40^{\circ} \mathrm{C}$
3. It is important to check that in Common DC systems the power flowing through the common DC connection does not exceed the rated power of the motor.

A.2.2 Derating

The load capacity decreases if the installation site ambient temperature exceeds $40^{\circ} \mathrm{C}$, the altitude exceeds 1000 meters or the switching frequency is changed from 4 kHz to 8,12 or 15 kHz .

A.2.2.1 Temperature derating

In the temperature range $+40^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$, the rated output current is decreased by 1% for every additional $1^{\circ} \mathrm{C}$. Refer to the below list for the actual derating.

Note: We do not recommend the use of frequency converters above $50^{\circ} \mathrm{C}$, otherwise, the resulting consequences

A.2.2.2 Altitude derating

The device can output rated power if the installation site below 1000m. The output power decreases if the altitude exceeds 1000 meters.

For the 3 ph 200 v converter, the maximum altitude is 3000 m , and if the altitude is between 2000 $\sim 3000 \mathrm{~m}, 1 \%$ will be allowed for every 100 m increase.

A.2.2.3 Carrier frequency derating

For KOC560 series VFD, different power level corresponds to different carrier frequency range. The rated power of the VFD is based on the factory carrier frequency, so if it is above the factory value, the VFD needs to derate 10% for every additional 1 kHz carrier frequency.

A. 3 Electric power network specification

Voltage	AC 3PH 220(-15\%)-240(+10\%)			
AC 3PH 380(-15\%)-440(+10\%)				
AC 3PH 520(-15\%)-690(+10\%)		$	$	Shaximum allowed prospective short-circuit current at the input power
:---				
Sonnection as defined in IEC 60439-1 is 100 kA. The drive is suitable for				
use in a circuit capable of delivering not more than 100 kA at the drive				
maximum rated voltage.				

A. 4 Motor connection data

Motor type	Asynchronous inductance motor
Voltage	0 to U1, 3-phase symmetrical, Umax at the field weakening point
Short-circuit protection	The motor output is short-circuit proof by IEC 61800-5-1
Frequency	$0-400 \mathrm{~Hz}$
Frequency resolution	0.01 Hz
Current	Refer toRated specifications
$-160-$	

Power limit	1.5 times of the rated power of the motor
Field weakening point	$10-400 \mathrm{~Hz}$
Carrier frequency	$4,8,12$ or 15 kHz

A.4.1 EMC compatibility and motor cable length

To comply with the European EMC Directive (2004/108/EC), use the following maximum motor cable lengths for 4 kHz carrier frequency.

All models (with external EMC filters)	Maximum motor cable length (m)
Environment category II (category C3)	30
Environment category I (category C2)	30

Maximum motor cable length is determined by the drive's operational factors. Contact your local representative for the exact maximum lengths when using external EMC filters.

A. 5 Applicable standards

The VFD complies with the following standards:

EN ISO 13849-1	Safety of machinery-safety related parts of control systems - Part 1: general principles for design
IEC/EN 60204-1	Safety of machinery. Electrical equipment of machines. Part 1: General requirements.
IEC/EN 62061	Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems
IEC/EN 61800-3	Adjustable speed electrical power drives systems. Part 3: EMC requirements and specific test methods
IEC/EN 61800-5-1	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
IEC/EN 61800-5-2	Adjustable speed electrical power drive systems - Part 5-2: Safety requirements. Functional.
GB/T 30844.1	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower— Part 1: Technical conditions
GB/T 30844.2	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower— Part 2: Test methods
GB/T 30844.3	General-purpose variable-frequency adjustable-speed equipment of 1 kV and lower- Part 3: Safety regulations

A.5.1 CE marking

The CE mark is attached to the drive to verify that the drive follows the provisions of the European Low Voltage (2014/35/EU) and EMC Directives (2014/30/EU).

A.5.2 Compliance with the European EMC Directive

The EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3:2004) covers requirementsstated for drives. See sectionEMC regulations.

A. 6 EMC regulations

EMC product standard (EN 61800-3:2004) contains the EMC requirements to the VFD.
First environment: domestic environment (includes establishments connected to a low-voltage network which supplies buildings used for domestic purposes).

Second environment includes establishments connected to a network not directly supplying domestic premises.

Four categories of the VFD:
VFD of category C1: VFD of rated voltage less than 1000 V and used in the first environment.

VFD of category C2: VFD of rated voltage less than 1000 V other than pins, sockets and motion devices and intended to be installed and commissioned only by a professional electrician when used in the first environment.

Note:

IEC/EN 61800-3 in EMC standard doesn't limit the power distribution of the VFD, but it defines the step, installation and commission. The professional electrician has necessary skills in installing and/or commissioning power drive systems, including their EMC aspects.

VFD of category C3: VFD of rated voltage less than 1000 V and used in the second environment other than the first one.

VFD of category C4: VFD of rated voltage more than 1000 V or the rated current is above or equal to 400A and used in the complicated system in second environment.

A.6.1 Category C2

The emission limits are complied with the following provisions:

1. The optional EMC filter is selected according to the options and installed as specified in the "appendix C.7".
2. The motor and control cables are selected as "appendix C.4".
3. The drive is installed according to the instructions reference in this manual "Charter 4"
4. For the maximum motor cable length, seeEMC compatibility and motor cable length.

- This product may cause radio inference, in which case supplementary mitigation measures may be required.

A.6.2 Category C3

The immunity performance of the drive complies with the demands of IEC/EN 61800-3, second environment.
The emission limits are complied with the following provisions:

1. The optional EMC filter is selected according to the options and installed as specified in the "appendix C.7"
2. The motor and control cables are selected as specified in this manual "appendix C. 4 ".
3. The drive is installed according to the instructions reference in this manual "Charter 4"
4. For the maximum motor cable length, seeEMC compatibility and motor cable length.

| - A drive of category C3 is not intended to be used on a low-voltage public |
| :--- | :--- |
| network which supplies domestic premises. Radio frequency interference is |
| expected if the drive is used on such a network. |

Appendix C Peripheral options and parts

C. 1 What this chapter contains

This chapter describes how to select the options and parts of KOC560 series.

C. 2 Peripheral wiring

Below is the peripheral wiring of KOC560 series VFD.

1. The 15 KW and lower models have standard film keypad and the 18.5 KW and higher models have standard LED keypad.
2. The 30 KW and lower models are embedded with braking unit.
3. Only the 37 KW and higher models have P 1 terminal and are connected with DC reactors.
4. The braking units apply standard braking unit DBU series in. Refer to the instruction of DBU for detailed information.

Pictures	Name	Descriptions		
$\\|\\|$	Cables	Device to transfer the electronic signals		

Pictures	Name	Descriptions

C. 3 Power supply

Please seelnstallation guidelines.

- Check that the voltage degree of the VFD complies with the voltage of the supply power voltage.

C. 4 Cables

C.4.1 Power cables

Dimension the input power and motor cables according to local regulations.

- The input power and the motor cables must be able to carry the corresponding load currents.
- The cable must be rated for at least $70^{\circ} \mathrm{C}$ maximum permissible temperature of the conductor in continuous use.
- The conductivity of the PE conductor must be equal to that of the phase conductor (same cross-sectional area). For the 37KW and higher models, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- Refer toTechnical datafor the EMC requirements.

A symmetrical shielded motor cable (see the figure below) must be used to meet the EMC requirements of the CE .

A four-conductor system is allowed for input cabling, but a shielded symmetrical cable is recommended. Compared to a four- conductor system, the use of a symmetrical shielded cable reduces electromagnetic emission of the whole drive system as well as motor bearing currents and wear.

Note: A separate PE conductor is required if the conductivity of the cable shield is not sufficient for the purpose.

To function as a protective conductor, the shield must have the same cross-sectional area as the phase conductors when they are made of the same metal.

To effectively suppress radiated and conducted radio-frequency emissions, the shield conductivity must be at least $1 / 10$ of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires. The better and tighter the shield is, the lower the emission level and bearing currents.

C.4.2 Control cables

All analog control cables and the cable used for the frequency input must be shielded. Use a double-shielded twisted pair cable (Figure a) for analog signals. Employ one individually shielded pair for each signal. Do not use common return for different analog signals.

A double-shielded cable is the best alternative for low-voltage digital signals, but a single-shielded or unshielded twisted multi-pair cable (Figure b) is also usable. However, for frequency input, always use a shielded cable.

The relay cable needs the cable type with braided metallic screen.
The keypad needs to connect with cables. It is recommended to use the screen cable on complex electrical magnetic condition.

Note: Run analog and digital signals in separate cables.

Do not make any voltage tolerance or insulation resistance tests (for example hi-pot or megger) on any part of the drive as testing can damage the drive. Every drive has been tested for insulation between the main circuit and the chassis at the factory. Also, there are voltage-limiting circuits inside the drive which cut down the testing voltage automatically.

Check the insulation of the input power cable according to local regulations before connecting to the drive.

Note: Check the insulation of the input power cables according to local regulations before connecting the cables.

VFD model	Recommended cable size(mm ${ }^{2}$)			Screw		
	R,S,T U,V,W	PE	P1 (+)	PB (+)(-)	Terminal screw size	Tightening torque (Nm)
KOC560-0R7G-4	1.0	1.0	1.0	1.0	M4	$1.2 \sim 1.5$
KOC560-1R5G-4	1.0	1.0	1.0	1.0	M4	$1.2 \sim 1.5$
KOC560-2R2G-4	1.0	1.0	1.0	1.0	M4	$1.2 \sim 1.5$
KOC560-004G/5R5P-4	$1.5 / 1.5$	$1.5 / 1.5$	$1.5 / 1.5$	$1.5 / 1.5$	M4	$1.2 \sim 1.5$
KOC560-5R5G/7R5P-4	$1.5 / 2.5$	$1.5 / 2.5$	$1.5 / 2.5$	$1.5 / 2.5$	M4	$1.2 \sim 1.5$
KOC560-7R5G/011P-4	$2.5 / 4$	$2.5 / 4$	$2.5 / 4$	$2.5 / 4$	M5	$2 \sim 2.5$
KOC560-011G/015P-4	$4 / 6$	$4 / 6$	$4 / 6$	$4 / 6$	M5	$2 \sim 2.5$
KOC560-015G/018P-4	$6 / 10$	$6 / 10$	$6 / 10$	$6 / 10$	M5	$2 \sim 2.5$
KOC560-018G/022P-4	$10 / 10$	$10 / 10$	$10 / 10$	$10 / 10$	M5	$2 \sim 2.5$
KOC560-022G/030P-4	$10 / 16$	$10 / 16$	$10 / 16$	$10 / 16$	M6	$3.5 \sim 3.8$
KOC560-030G/037P-4	$16 / 25$	$16 / 25$	$16 / 25$	$16 / 25$	M6	$3.5 \sim 3.8$
KOC560-037G/045P-4	$25 / 25$	$16 / 16$	$25 / 25$	$25 / 25$	M8	$6 \sim 7$

VFD model	Recommended cable size(mm²)			Screw		
	R,S,T U,V,W	PE	P1 (+)	PB (+) (-)	Terminal screw size	Tightening torque (Nm)
KOC560-045G/055P-4	$25 / 35$	$16 / 16$	$25 / 35$	$25 / 35$	M8	$6 \sim 7$
KOC560-055G/075P-4	$35 / 50$	$16 / 25$	$35 / 50$	$35 / 50$	M8	$6 \sim 7$
KOC560-075G/090P-4	$50 / 70$	$25 / 35$	$50 / 70$	$50 / 70$	M10	$9 \sim 10$
KOC560-090G/110P-4	$70 / 95$	$35 / 50$	$70 / 95$	$70 / 95$	M10	$9 \sim 10$
KOC560-110G/132P-4	$95 / 95$	$50 / 50$	$95 / 95$	$95 / 95$	M10	$9 \sim 10$
KOC560-132G/160P-4	$95 / 150$	$50 / 70$	$95 / 150$	$95 / 150$	M12	$31 \sim 40$
KOC560-160G/185P-4	$150 / 185$	$70 / 95$	$150 / 185$	$150 / 185$	M12	$31 \sim 40$
KOC560-185G/200P-4	$185 /$	$95 / 95$	$185 /$ 185	$185 /$ 185	M12	$31 \sim 40$
KOC560-200G/220P-4	$185 /$ 2×95	$95 / 95$	$185 /$ 2×95	$185 /$ 2×95	M12	$31 \sim 40$
KOC560-220G/250P-4	$2 \times 95 /$ 2×95	$95 / 95$	$2 \times 95 /$ 2×95	$2 \times 95 /$ 2×95	M12	$31 \sim 40$
KOC560-250G/280P-4	$2 \times 95 /$ 2×150	$95 /$ 150	$2 \times 95 /$ 2×150	$2 \times 95 /$ 2×150	M12	$31 \sim 40$
KOC560-280G/315P-4	$2 \times 150 /$ 2×150	$150 /$ 150	$2 \times 150 /$ 2×150	$2 \times 150 /$ 2×150	M12	$31 \sim 40$
KOC560-315G/355P-4	$2 \times 150 /$ 2×185	$150 /$ 185	$2 \times 150 /$ 2×185	$2 \times 150 /$ 2×185	M12	$31 \sim 40$
KOC560-355G/400P-4	$2 \times 185 /$ 3×150	$185 /$ 2×120	$2 \times 185 /$ 3×150	$2 \times 185 /$ 3×150	M12	$31 \sim 40$
KOC560-400G-4	3×150	2×120	3×150	3×150	M12	$31 \sim 40$
KOC560-450G-4	3×185	2×150	3×185	3×185	M12	$31 \sim 40$
KOC560-500G-4	3×185	2×150	3×185	3×185	M12	$31 \sim 40$

Note:

1. It is appropriate to use the recommended cable size under $40^{\circ} \mathrm{C}$ and rated current. The wiring distance should be no more than 100 m .
2. Terminals P1, (+), PB and (-) connects the DC reactor options and parts.

C.4.3 Routing the cables

Route the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. It is recommended that the motor cable, input power cable and control cables are installed on separate trays. Avoid long parallel runs of motor cables with other
cables to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables make sure that they are arranged at an angle as near to 90 degrees as possible.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

A figure of the cable routing is shown below.

C.4.4 Checking the insulation

Check the insulation of the motor and motor cable as follows:

1. Check that the motor cable is connected to the motor and disconnected from the drive output terminals U, V and W .
2. Measure the insulation resistance between each phase conductor and the Protective Earth conductor using a measuring voltage of 500 V DC. For the insulation resistance of other motors, please consult the manufacturer's instructions.

Note: Moisture inside the motor casing will reduce the insulation resistance. If moisture is suspected, dry the motor and repeat the measurement.

C. 5 Breaker, electromagnetic contactor and leakage protection switch

Due to the VFD output high frequency PWM voltage waveform, and the existence of distributed capacitance between IGBT and heat sink in internal VFD and the distributed capacitance between motor stator and rotor, the VFD will inevitably generate high-frequency leakage current to ground. The high-frequency leakage current will back flow to grid through the earth to interference the leakage protection switch, thus causing the leakage protection switch malfunction. This is due to the VFD output voltage characteristics inherent in the decision.

To ensure the stability of the system, it is recommended to use the VFD dedicated leakage protection switch which rated residual operation current 30 mA or more(for example, corresponds to IEC60755 Type B). If you are not using the VFD dedicated leakage protection switch caused by malfunction, try to reduce the carrier frequency, or replace the electromagnetic leakage protection switch which rated residual operating current of 200 mA or more.

It is necessary to add fuse for the avoidance of overload.

It is appropriate to use a breaker (MCCB) which complies with the VFD power in the 3-phase AC power and input power and terminals (R, S and T). The capacity of the VFD should be 1.5-2 times of the rated current.

| - Due to the inherent operating principle and construction of circuit breakers, |
| :--- | :--- |
| independent of the manufacturer, hot ionized gases may escape from the breaker |
| enclosure in case of a short-circuit. To ensure safe use, special attention must be |
| paid to the installation and placement of the breakers. Follow the manufacturer's |
| instructions. |

VFD model	Breaker rated current (A)	Fuse rated current $\mathbf{(A)}$	Contactor rated current (A)
KOC560-0R7G-4	4	5	9
KOC560-1R5G-4	6	10	9
KOC560-2R2G-4	10	10	9
KOC560-004G/5R5P-4	$20 / 25$	$20 / 35$	$18 / 25$
KOC560-5R5G/7R5P-4	$25 / 32$	$35 / 40$	$25 / 32$
KOC560-7R5G/011P-4	$32 / 50$	$40 / 50$	$32 / 38$
KOC560-011G/015P-4	$50 / 63$	$50 / 60$	$38 / 50$
KOC560-015G/018P-4	$63 / 63$	$60 / 70$	$50 / 65$
KOC560-018G/022P-4	$63 / 80$	$70 / 90$	$65 / 80$
KOC560-022G/030P-4	$80 / 100$	$90 / 125$	$80 / 80$
KOC560-030G/037P-4	$100 / 125$	$125 / 125$	$80 / 98$
KOC560-037G/045P-4	$125 / 140$	$125 / 150$	$98 / 115$
KOC560-045G/055P-4	$140 / 180$	$150 / 200$	$115 / 150$
KOC560-055G/075P-4	$180 / 225$	$200 / 250$	$150 / 185$
KOC560-075G/090P-4	$225 / 250$	$250 / 300$	$185 / 225$
KOC560-090G/110P-4	$250 / 315$	$300 / 350$	$225 / 265$
KOC560-110G/132P-4	$315 / 400$	$350 / 400$	$265 / 330$
KOC560-132G/160P-4	$400 / 500$	$400 / 500$	$330 / 400$
KOC560-160G/185P-4	$500 / 500$	$500 / 600$	$400 / 400$
KOC560-185G/200P-4	$500 / 630$	$600 / 600$	$400 / 500$
KOC560-200G/220P-4	$630 / 630$	$600 / 700$	$500 / 500$
KOC560-220G/250P-4	$630 / 700$	$700 / 800$	$500 / 630$
KOC560-250G/280P-4	$700 / 800$	$800 / 1000$	$630 / 630$
KOC560-280G/315P-4	$800 / 1000$	$1000 / 1000$	$630 / 800$
KOC560-315G/355P-4	$1000 / 1000$	$1000 / 1000$	$800 / 800$
KOC560-355G/400P-4	$1000 / 1000$	$1000 / 1200$	$800 / 1000$
KOC560-400P-4	1000	1200	1000

VFD model	Breaker rated current (A)	Fuse rated current (A)	Contactor rated current (A)
KOC560-400G-4	1000	1200	1000
KOC560-450G-4	1250	1200	1000
KOC560-500G-4	1250	1400	1000

Note: The forward slash "/" is used to distinguish data about G-type VFD from data about P-type VFD.

C. 6 Reactors

When the distance between the VFD and motor is longer than 50 m , the parasitic capacitance between the long cable and ground may cause large leakage current, and overcurrent protection of the VFD may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. When the total length is longer than 50 m , an output reactor must be added on the output side of the VFD. If the distance between the VFD and motor ranges from 50 m to 100 m , select the reactor according to the following table. If the distance is longer than 100 m , contact 's technical support. The mapping between VFD models and reactors is as follows:

VFD model	Input reactor		DC reactor	Output reactor	
	G-type	P-type		G-type	P-type
KOC560-0R7G-4	ACL2-1R5-4	$/$			OCL2-1R5-4

VFD model	Input reactor		DC reactor	Output reactor	
	G-type	P-type		G-type	P-type
KOC560-160G/185P-4	ACL2-160-4	ACL2-200-4	DCL2-160-4	OCL2-200-4	OCL2-200-4
KOC560-185G/200P-4	ACL2-200-4	ACL2-200-4	DCL2-220-4	OCL2-200-4	OCL2-200-4
KOC560-200G/220P-4	ACL2-200-4	ACL2-280-4	DCL2-220-4	OCL2-200-4	OCL2-280-4
KOC560-220G/250P-4	ACL2-280-4	ACL2-280-4	DCL2-280-4	OCL2-280-4	OCL2-280-4
KOC560-250G/280P-4	ACL2-280-4	ACL2-280-4	DCL2-280-4	OCL2-280-4	OCL2-280-4
KOC560-280G/315P-4	ACL2-280-4	ACL2-350-4	DCL2-280-4	OCL2-280-4	OCL2-350-4
KOC560-315G/355P-4	ACL2-350-4	ACL2-350-4	DCL2-315-4	OCL2-350-4	OCL2-350-4
KOC560-355G/400P-4	Standard	Standard	DCL2-400-4	OCL2-350-4	OCL2-400-4
KOC560-400G-4	Standard	1	DCL2-400-4	OCL2-400-4	1
KOC560-450G-4	Standard	1	DCL2-500-4	OCL2-500-4	1
KOC560-500G-4	Standard	1	DCL2-500-4	OCL2-500-4	1

Note:

1. The rated derate voltage of the input reactor is $2 \% \pm 15 \%$.
2. The power factor of the input side is above 90% after adding DC reactor.
3. The rated derate voltage of the output reactor is $1 \% \pm 15 \%$.
4. The preceding optional parts are externally connected. If the $220 \sim 315 \mathrm{KW}$ models use the optional bases, two reactors can be configured for each VFD.

C. 7 Filters

for power $0.75 \mathrm{KW} \sim 110 \mathrm{KW}, \mathrm{C} 3$ filters can be optional; . If it is needed to fulfill the requirements of C3 class, users can connect jumper J10 which is put in the same bag with the operation manual.

Filters for KOC560 series VFD

VFD model	Input filter	Output filter
KOC560-0R7G-4	FLT-P04006L-B	FLT-L04006L-B
KOC560-1R5G-4		
KOC560-2R2G-4		
KOC560-004G/5R5P-4	FLT-P04016L-B	FLT-L04016L-B
KOC560-5R5G/7R5P-4		
KOC560-7R5G/011P-4	FLT-P04032L-B	FLT-L04032L-B
KOC560-011G/015P-4		
KOC560-015G/018P-4	FLT-P04045L-B	FLT-L04045L-B
KOC560-018G/022P-4		
KOC560-022G/030P-4	FLT-P04065L-B	FLT-L04065L-B
KOC560-030G/037P-4		
KOC560-037G/045P-4	FLT-P04100L-B	FLT-L04100L-B
KOC560-045G/055P-4		
KOC560-055G/075P-4	FLT-P04150L-B	FLT-L04150L-B
KOC560-075G/090P-4		
KOC560-090G/110P-4	FLT-P04240L-B	FLT-L04240L-B
KOC560-110G/132P-4		
KOC560-132G/160P-4		
KOC560-160G/185P-4	FLT-P04400L-B	FLT-L04400L-B
KOC560-185G/200P-4		
KOC560-200G/220P-4		
KOC560-220G/250P-4	FLT-P04600L-B	FLT-L04600L-B
KOC560-250G/280P-4		
KOC560-280G/315P-4		
KOC560-315G/355P-4	FLT-P04800L-B	FLT-L04800L-B
KOC560-355G/400P-4		
KOC560-400G-4		
KOC560-450G-4	FLT-P041000L-B	FLT-L041000L-B
KOC560-500G-4		

Note: The input EMI meet the requirement of C 2 after adding input filters.

C. 8 Braking system

C.8.1 Select the braking components

It is appropriate to use braking resistor or braking unit when the motor brakes sharply or the motor is driven by a high inertia load. The motor will become a generator if its actual rotating speed is higher than the corresponding speed of the reference frequency. As a result, the inertial energy of the motor and load return to the VFD to charge the capacitors in the main DC circuit. When the voltage increases to the limit, damage may occur to the VFD. It is necessary to apply braking unit/resistor to avoid this accident happens.

| - Only qualified electricians are allowed to design, install, commission and operate |
| :---: | :--- |
| on the VFD. |
| - Follow the instructions in "warning" during working. Physical injury or death or |
| serious property may occur. |
| - Only qualified electricians are allowed to wire. Damage to the VFD or braking |
| options and part may occur. Read carefully the instructions of braking resistors or |
| units before connecting them with the VFD. |
| - Do not connect the braking resistor with other terminals except for PB and (-). Do |
| not connect the braking unit with other terminals except for (+) and (-). Damage to |
| the VFD or braking circuit or fire may occur |

KOC560 series VFD of the 030G/037P and lower models need internal braking units and the VFD of the $037 \mathrm{G} / 045 \mathrm{P}$ and higher models need external braking units. Please select the resistance and power of the braking resistors according to actual utilization.

Note:

Select the resistor and power according to the provided data.
The braking torque may increase because of the raising of braking resistor. The below table is calculated at 100% of the braking torque, $10 \%, 50 \%$ and 80% of the braking usage ratio. The user can select according to the actual working.

Refer to the operation instructions of braking units when using external units for right setting of voltage degree. Otherwise normal operation of the VFD may be impacted.

VFD model	Braking unit type	100% of braking torque (Q)	The consumed power of the braking resistor			Min. Braking Resistor (Q)
			$\begin{gathered} 10 \% \\ \text { braking } \end{gathered}$	$\begin{gathered} 50 \% \\ \text { braking } \end{gathered}$	$\begin{gathered} 80 \% \\ \text { braking } \end{gathered}$	
KOC560-0R7G-4	Internal braking unit	653	0.1	0.6	0.9	240
KOC560-1R5G-4		326	0.23	1.1	1.8	170
KOC560-2R2G-4		222	0.33	1.7	2.6	130
KOC560-004G/5R5P-4		122	0.6	3	4.8	80
KOC560-5R5G/7R5P-4		89	0.75	4.1	6.6	60
KOC560-7R5G/011P-4		65	1.1	5.6	9	47
KOC560-011G/015P-4		44	1.7	8.3	13.2	31
KOC560-015G/018P-4		32	2	11	18	23
KOC560-018G/022P-4		27	3	14	22	19
KOC560-022G/030P-4		22	3	17	26	17
KOC560-030G/037P-4		17	5	23	36	17
KOC560-037G/045P-4	DBU100H-060-4	13	6	28	44	11.7
KOC560-045G/055P-4	DBU100H-110-4	10	7	34	54	6.4
KOC560-055G/075P-4		8	8	41	66	
KOC560-075G/090P-4		6.5	11	56	90	
KOC560-090G/110P-4	DBU100H-160-4	5.4	14	68	108	4.4
KOC560-110G/132P-4		4.5	17	83	132	
KOC560-132G/160P-4	DBU100H-220-4	3.7	20	99	158	3.2
KOC560-160G/185P-4	DBU100H-320-4	3.1	24	120	192	2.2
KOC560-185G/200P-4		2.8	28	139	222	
KOC560-200G/220P-4		2.5	30	150	240	
KOC560-220G/250P-4	DBU100H-400-4	2.2	33	165	264	1.8
KOC560-250G/280P-4		2.0	38	188	300	
KOC560-280G/315P-4	$\begin{gathered} \text { Two } \\ \text { DBU100H-320-4 } \end{gathered}$	3.6*2	21*2	105*2	168*2	2.2*2
KOC560-315G/355P-4		3.2*2	24*2	118*2	189*2	
KOC560-355G/400P-4		2.8*2	27*2	132*2	210*2	
KOC560-400G-4		2.4*2	30*2	150*2	240*2	
KOC560-450G-4	$\begin{gathered} \text { Two } \\ \text { DBU100H-400-4 } \end{gathered}$	2.2*2	34*2	168*2	270*2	1.8*2
KOC560-500G-4		2*2	38*2	186*2	300*2	

分

- Never use a brake resistor with a resistance below the minimum value specified for the particular drive. The drive and the internal chopper are not able to handle the overcurrent caused by the low resistance.
- Increase the power of the braking resistor properly in the frequent braking situation (the frequency usage ratio is more than 10%).

C.8.2 Select the brake resistor cables

Use a shielded cable to the resistor cable.

C.8.3 Place the brake resistor

Install all resistors in a place where they will cool.

- The materials near the brake resistor must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius Protect the resistor against contact

Installation of the braking resistor:

- The 030G/037P and lower models only need external braking resistors.
- PB and (+) are the wiring terminals of the braking resistors.

Installation of braking units:

	$\bullet 37 \mathrm{KW}$ and higher models only need external braking units. $\bullet(+),(-)$ are the wiring terminals of the braking units. - The wiring length between the (+),(-) terminals of the VFD and the ($(+),(-)$ terminals of the braking units should be no more than 5 m, and the distributing length among BR1 and BR2 and the braking resistor terminals should be no more than 10m.

Signal installation is as below:

